Integral option
Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 1, pp. 201-211
Voir la notice de l'article provenant de la source Math-Net.Ru
In the context of diffusion model of the $(B,S)$-market consisting of two assets: riskless bank account $B=(B_t)_{t\ge 0}$ and risky stock $S=(S_t)_{t\ge 0}$ described by (1.1) and (1.2) we consider the option of American type with payment function of “integral type” $f=(f_t)_{t\ge 0}$:
$$
f_t=e^{-\lambda t}\left[\int_0^t S^u\,du+s\psi_0\right].
$$
The paper solves the problem of definition of the fair price of the integral option under consideration. The structure of the expiration time is also described.
Keywords:
Black and Scholes model of $(B,S)$-market American option, integral option, Asian option, optimal stopping time, Kummer's functions, rational time.
@article{TVP_1994_39_1_a6,
author = {D. O. Kramkov and \'E. Mordecki},
title = {Integral option},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {201--211},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {1994},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1994_39_1_a6/}
}
D. O. Kramkov; É. Mordecki. Integral option. Teoriâ veroâtnostej i ee primeneniâ, Tome 39 (1994) no. 1, pp. 201-211. http://geodesic.mathdoc.fr/item/TVP_1994_39_1_a6/