Local Bahadur optimality and characterization problems
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 79-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,X_2,\dots$ be i. i. d. observations with a common distribution function $G(x;\theta)$. Consider the problem of testing the null hypothesis $H_0:\,\theta=0$ against $H_1:\,\theta>0$ on the basis of a sequence of test statistics $\{T_n=T_n(X_1,\dots,X_n)\}$ with an exact Bahadur slope $c_T(\theta)$. The sequence $\{T_n\}$ is said to be locally optimal if $c_T(\theta)\sim 2K(\theta)$, $\theta\to 0$, where $K(\theta)$ is the Kullback–Leibler information number. The aim of the paper is to describe the class of distribution functions
$G(x,\theta)$ (the domain of local Bahadur optimality) for which some well-known nonparametric statistics such as Kolmogorov–Smirnov $\omega^2$, their two-sample analogues and linear rank statistics are locally optimal. If $\theta$ is a location or a scale parameter, this domain consists of a single law, e. g. of the Laplace distribution for Kolmogorov–Smirnov statistic and the hyperbolic cosine distribution for $\omega^2$-statistic in the location case.
@article{TVP_1984_29_1_a6,
author = {Ya. Yu. Nikitin},
title = {Local {Bahadur} optimality and characterization problems},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {79--92},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a6/}
}
Ya. Yu. Nikitin. Local Bahadur optimality and characterization problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a6/