The invariance principle for weakly dependent variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 33-40
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S_n=X_{n1}+\dots+X_{nn}$, $\mathbf DX_{nk}\infty$, $\mathbf EX_{nk}=0$.
Denote $\mathscr F_k=\mathscr F_{nk}=\sigma\{(X_{ns})_{s\ge k}\}$ and
$E_kZ=\mathbf E(Z\mid\mathscr F_k)$.
Let $\sigma$-field $\mathscr E^k=\sigma\{(E_j1_{X_{ni}$,
\begin{gather*}
\gamma_n(r)=\sup_k\sup_{B\in\mathscr F_{k+r}}\sup_{A_1,A_2\in\mathscr E^k} |\mathbf P(B\mid A_1)-
\mathbf(B\mid A_2)|,
\\
l_n=\min_{m\ge 2}\biggl(1+\sum_{n/m>r\ge 1}\sqrt{\gamma_n(mr)}\biggr)^{1/2}\biggl(m+\sum_{r\ge 1}\gamma_n(r)\biggr),\quad B_n^2=\mathbf DS_n.
\end{gather*}
We define the random functions on $[0, 1]$
$$
\xi_n(t)=B_n^{-1}\sum_{j\ge 1}X_{nj}\mathbf 1_{b_j\le tB_n^2},\qquad b_j=(\mathbf D-\mathbf DE_j)\sum_{k=1}^jX_{nk},
$$
and denote by $\mathscr L(\xi_n)$ the distribution of $\xi_n$ in the Skorohod space.
Theorem. {\it If $\displaystyle\lim_{n\to\infty}B_n^{-2}\biggl(l_n+\sum_{r=1}^{n-1}\sqrt{\gamma_n(r)}\biggr)\sum_{j=1}^n\mathbf EX_{nj}^2 1_{|X_{nj}|>\varepsilon B_n/l_n}=0$ for every $\varepsilon>0$,
then $\mathscr L(\xi_n)$ converges weakly to a Wiener distribution.}
The estimate $\displaystyle\mathbf DS_n\ge\frac{1}{16}(1-\gamma_n(1))\sum_{k=1}^n\mathbf DX_{nk}$ is obtained also.
This theorem generalizes the well-known Dobrusin's results [9] for inhomogeneous
Markow chains.
@article{TVP_1984_29_1_a2,
author = {{\CYRV}. A. Lif\v{s}ic},
title = {The invariance principle for weakly dependent variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {33--40},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a2/}
}
В. A. Lifšic. The invariance principle for weakly dependent variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 29 (1984) no. 1, pp. 33-40. http://geodesic.mathdoc.fr/item/TVP_1984_29_1_a2/