Limit theorems for sums of independent random variables defined on a~recurrent random walk
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 98-114
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\nu_k$ be a recurrent random walk with finite variance on an integer lattice. Let $\{X_i\}$, $\{X_{ij}\}$ $(-\infty$ be sequences of independent random variables, which are independent of $\{\nu_k\}$, and let $b_n(k,i)$ be a non-random positive variables. The paper deals with the asymptotic (as $n\to\infty$) behaviour of the quantities
$$
S_n=\sum_{k=1}^nX_{\nu_k},\qquad\bar S_n=\sum_{k=1}^{\varkappa_n}X_{\nu_k},
$$
where $\varkappa_n$ is the first moment when the random walk leaves the interval $(-a\sqrt n,b\sqrt n)$, $a>0$, $b>0$,
$$
I_n=\sum_{k=1}^nb_n(k,\nu_k)X_{\nu_k}\qquad 
I_n=\sum_{k=1}^nb_n(k,\nu_k)\sum_{j=1}^kX_{{\nu_k}j},
$$
and some others.
			
            
            
            
          
        
      @article{TVP_1983_28_1_a5,
     author = {A. N. Borodin},
     title = {Limit theorems for sums of independent random variables defined on a~recurrent random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {98--114},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a5/}
}
                      
                      
                    TY - JOUR AU - A. N. Borodin TI - Limit theorems for sums of independent random variables defined on a~recurrent random walk JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1983 SP - 98 EP - 114 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a5/ LA - ru ID - TVP_1983_28_1_a5 ER -
A. N. Borodin. Limit theorems for sums of independent random variables defined on a~recurrent random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a5/
