Limit theorems for sums of independent random variables defined on a~recurrent random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 98-114

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\nu_k$ be a recurrent random walk with finite variance on an integer lattice. Let $\{X_i\}$, $\{X_{ij}\}$ $(-\infty$ be sequences of independent random variables, which are independent of $\{\nu_k\}$, and let $b_n(k,i)$ be a non-random positive variables. The paper deals with the asymptotic (as $n\to\infty$) behaviour of the quantities $$ S_n=\sum_{k=1}^nX_{\nu_k},\qquad\bar S_n=\sum_{k=1}^{\varkappa_n}X_{\nu_k}, $$ where $\varkappa_n$ is the first moment when the random walk leaves the interval $(-a\sqrt n,b\sqrt n)$, $a>0$, $b>0$, $$ I_n=\sum_{k=1}^nb_n(k,\nu_k)X_{\nu_k}\qquad I_n=\sum_{k=1}^nb_n(k,\nu_k)\sum_{j=1}^kX_{{\nu_k}j}, $$ and some others.
@article{TVP_1983_28_1_a5,
     author = {A. N. Borodin},
     title = {Limit theorems for sums of independent random variables defined on a~recurrent random walk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {98--114},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a5/}
}
TY  - JOUR
AU  - A. N. Borodin
TI  - Limit theorems for sums of independent random variables defined on a~recurrent random walk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 98
EP  - 114
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a5/
LA  - ru
ID  - TVP_1983_28_1_a5
ER  - 
%0 Journal Article
%A A. N. Borodin
%T Limit theorems for sums of independent random variables defined on a~recurrent random walk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 98-114
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a5/
%G ru
%F TVP_1983_28_1_a5
A. N. Borodin. Limit theorems for sums of independent random variables defined on a~recurrent random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a5/