Multidimensional integral limit theorems for large deviations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 62-82
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $S_n=X^{(1)}+\dots+X^{(n)}$ be a sum of independent identically distributed random vectors in $R^s$ and let $\{D_n\}$, $D_n\subset R^s$, be a sequence of convex Borel sets, for $n=1,2,\dots$. Let the point $a_n$ be the point of $D_n$ which is nearest to the origin. Under general conditions we obtain Cramer's type asymptotical formulas for
$$
\mathbf P\{n^{-1/2}S_n\in D_n\},\qquad|a_n|\ge 1,\qquad|a_n|=o(\sqrt{n}),\qquad n\to\infty.
$$
            
            
            
          
        
      @article{TVP_1983_28_1_a3,
     author = {A. K. Ale\v{s}kevi\v{c}iene},
     title = {Multidimensional integral limit theorems for large deviations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {62--82},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a3/}
}
                      
                      
                    A. K. Aleškevičiene. Multidimensional integral limit theorems for large deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 62-82. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a3/
