On the exit of random walk out of the curvilinear domain
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 169-175

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S_0=0$, $S_n=X_1+\dots+X_n$, where $X_1,X_2,\dots$ are i. i. d. r. v.'s; let $\varphi(x)$, $g(x)$ be regularly varying strictly increasing positive functions and $g(n)\ n^{-1/2}\to\infty$, $n\to\infty$. Let $N_g=\min\{n\colon S_n>g(n)\}$, $S_g=S_{N_g}$, $\chi_g=S_g-g(N_g)$, $q_\infty=\mathbf P\{|S_k|\le g(k)\ \forall\,k\}$. The typical result of the paper is the following Theorem. {\it Let for any $c>0$ $$ \sum_{n=1}^\infty\varphi(g(n))n^{-1}\exp\{-cg^2(n)\,n^{-1}\}\infty. $$ Then $\mathbf E[\varphi(S_g)\mid N_g\infty]\infty$ if (and in the case $q_\infty>0$ only if) $$ \mathbf E\varphi(X_1^+)G(X_1^+)\infty,\qquad\text{where}\quad G=g^{-1}. $$} The analogous results are obtained for $N_g$, $\chi_g$.
@article{TVP_1983_28_1_a13,
     author = {M. U. Gafurov and V. I. Rotar'},
     title = {On the exit of random walk out of the curvilinear domain},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {169--175},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a13/}
}
TY  - JOUR
AU  - M. U. Gafurov
AU  - V. I. Rotar'
TI  - On the exit of random walk out of the curvilinear domain
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1983
SP  - 169
EP  - 175
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a13/
LA  - ru
ID  - TVP_1983_28_1_a13
ER  - 
%0 Journal Article
%A M. U. Gafurov
%A V. I. Rotar'
%T On the exit of random walk out of the curvilinear domain
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1983
%P 169-175
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a13/
%G ru
%F TVP_1983_28_1_a13
M. U. Gafurov; V. I. Rotar'. On the exit of random walk out of the curvilinear domain. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 169-175. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a13/