On the exit of random walk out of the curvilinear domain
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 169-175
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $S_0=0$, $S_n=X_1+\dots+X_n$, where $X_1,X_2,\dots$ are i. i. d. r. v.'s; let $\varphi(x)$, $g(x)$ be regularly varying strictly increasing positive functions and $g(n)\ n^{-1/2}\to\infty$, $n\to\infty$. 
Let $N_g=\min\{n\colon S_n>g(n)\}$, $S_g=S_{N_g}$, $\chi_g=S_g-g(N_g)$, 
$q_\infty=\mathbf P\{|S_k|\le g(k)\ \forall\,k\}$.
The typical result of the paper is the following
Theorem. {\it Let for any $c>0$
$$
\sum_{n=1}^\infty\varphi(g(n))n^{-1}\exp\{-cg^2(n)\,n^{-1}\}\infty.
$$
Then $\mathbf E[\varphi(S_g)\mid N_g\infty]\infty$ if (and in the case $q_\infty>0$ only if)
$$
\mathbf E\varphi(X_1^+)G(X_1^+)\infty,\qquad\text{where}\quad G=g^{-1}.
$$}
The analogous results are obtained for $N_g$, $\chi_g$.
			
            
            
            
          
        
      @article{TVP_1983_28_1_a13,
     author = {M. U. Gafurov and V. I. Rotar'},
     title = {On the exit of random walk out of the curvilinear domain},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {169--175},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a13/}
}
                      
                      
                    M. U. Gafurov; V. I. Rotar'. On the exit of random walk out of the curvilinear domain. Teoriâ veroâtnostej i ee primeneniâ, Tome 28 (1983) no. 1, pp. 169-175. http://geodesic.mathdoc.fr/item/TVP_1983_28_1_a13/
