Rate of convergence in a~boundary problem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 141-142
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{\xi_i\}_{i\ge 1}$and $\{\tau_i\}_{i\ge 1}$ be the sequences of i. i . d. r. v. 's such that $\tau_1\ge 0$ a. s., $\mathbf E\xi_1=0$, $\mathbf E\xi_1^2=\mathbf E\tau_1=1$ and
$$
S_n=\sum_{i=1}^n\xi_i,\quad T_n=\sum_{i=1}^n\tau_i,\quad\nu(t)=max\{k\ge 0:\,T_k\le t\}.
$$
We investigate the rate of convergence
\begin{gather*}
\mathbf P\{g^-(n^{-1}T_k)^{-1/2}S_k^+(n^{-1}T_k),\ k\le \nu(n)\}\to\\
\to\mathbf P\{g^-(t)(t)^+(t),\ 0\le t\le 1\},\qquad n\to\infty
\end{gather*}
where $w(t)$ is a standard Wiener process and $g^\pm(t)$ are Lipschitz functions.
			
            
            
            
          
        
      @article{TVP_1982_27_1_a12,
     author = {K. A. Borovkov},
     title = {Rate of convergence in a~boundary problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {141--142},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a12/}
}
                      
                      
                    K. A. Borovkov. Rate of convergence in a~boundary problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 141-142. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a12/
