On a constant arising in the asymtotic theory of symmetric groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 129-140
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $x_1(g)\ge x_1(g)\ge\dots$ be the lengths of the cycles of the permutation $g\in S_n$ and $$ \widetilde\Sigma=\{(\sigma_1,\sigma_2,\dots):\,\sigma_1\ge\sigma_2\ge\dots,\ \sigma_1+\sigma_2+\dots=1\} $$ The uniform probability distribution on $S_n$ and the map $$ S_n\to\widetilde\Sigma:\,g\to(n^{-1}x_1(g),\,n^{-1}x_2(g),\dots) $$ generate a probability distribution on $\widetilde\Sigma$. We investigate some properties of this distribution when $n\to\infty$. In particular, we prove that the constant introduced in [1], [2] coincides with the Euler constant.
@article{TVP_1982_27_1_a11,
author = {Zv. Ignatov},
title = {On a constant arising in the asymtotic theory of symmetric groups},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {129--140},
year = {1982},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/}
}
Zv. Ignatov. On a constant arising in the asymtotic theory of symmetric groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/