On a constant arising in the asymtotic theory of symmetric groups
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 129-140
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $x_1(g)\ge x_1(g)\ge\dots$ be the lengths of the cycles of the permutation $g\in S_n$
and
$$
\widetilde\Sigma=\{(\sigma_1,\sigma_2,\dots):\,\sigma_1\ge\sigma_2\ge\dots,\ \sigma_1+\sigma_2+\dots=1\}
$$
The uniform probability distribution on $S_n$ and the map
$$
S_n\to\widetilde\Sigma:\,g\to(n^{-1}x_1(g),\,n^{-1}x_2(g),\dots)
$$
generate a probability distribution on  $\widetilde\Sigma$. We investigate some properties of this distribution
when $n\to\infty$. In particular, we prove that the constant introduced in [1], [2] coincides with the Euler constant.
			
            
            
            
          
        
      @article{TVP_1982_27_1_a11,
     author = {Zv. Ignatov},
     title = {On a constant arising in the asymtotic theory of symmetric groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/}
}
                      
                      
                    Zv. Ignatov. On a constant arising in the asymtotic theory of symmetric groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/
