On a constant arising in the asymtotic theory of symmetric groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 129-140

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_1(g)\ge x_1(g)\ge\dots$ be the lengths of the cycles of the permutation $g\in S_n$ and $$ \widetilde\Sigma=\{(\sigma_1,\sigma_2,\dots):\,\sigma_1\ge\sigma_2\ge\dots,\ \sigma_1+\sigma_2+\dots=1\} $$ The uniform probability distribution on $S_n$ and the map $$ S_n\to\widetilde\Sigma:\,g\to(n^{-1}x_1(g),\,n^{-1}x_2(g),\dots) $$ generate a probability distribution on $\widetilde\Sigma$. We investigate some properties of this distribution when $n\to\infty$. In particular, we prove that the constant introduced in [1], [2] coincides with the Euler constant.
@article{TVP_1982_27_1_a11,
     author = {Zv. Ignatov},
     title = {On a constant arising in the asymtotic theory of symmetric groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {129--140},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/}
}
TY  - JOUR
AU  - Zv. Ignatov
TI  - On a constant arising in the asymtotic theory of symmetric groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1982
SP  - 129
EP  - 140
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/
LA  - ru
ID  - TVP_1982_27_1_a11
ER  - 
%0 Journal Article
%A Zv. Ignatov
%T On a constant arising in the asymtotic theory of symmetric groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1982
%P 129-140
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/
%G ru
%F TVP_1982_27_1_a11
Zv. Ignatov. On a constant arising in the asymtotic theory of symmetric groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 27 (1982) no. 1, pp. 129-140. http://geodesic.mathdoc.fr/item/TVP_1982_27_1_a11/