On a~statistical problem connected with a~random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 564-573
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Z^d$ be a $d$-dimensional lattice and $P(0,z)$, $z\in Z^d$, be given transition function of a random walk. If there is no particle on the lattice (hypothesis $H_0$) we observe independent gaussian noises at each moment $t=0,1,\dots$ for every $z\in Z^d$. If there is a particle on the lattice (hypothesis $H_1$) then it moves according to a random walk with the transition function $P(0,z)$ and we observe the additional constant signal $\mu$ at each moment for the point where the particle is situated. For what $P(0,z)$ and $\mu$ is it possible to test the hypotheses $H_0$ and $H_1$ without error for infinite time of observation? We show that for $d=1$ and for $d=2$ it is possible to distinguish $H_0$ and $H_1$ for any $\mu\ne 0$, but for $d\ge 3$ there exists a «critical» value $\mu_0$ of $|\mu|$. Some lower and upper bounds for $\mu_0$ are obtained.
@article{TVP_1981_26_3_a8,
author = {M. V. Burna\v{s}ev},
title = {On a~statistical problem connected with a~random walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {564--573},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a8/}
}
M. V. Burnašev. On a~statistical problem connected with a~random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 3, pp. 564-573. http://geodesic.mathdoc.fr/item/TVP_1981_26_3_a8/