On the exit time of sums of bounded random variables out of a~curve strip
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 287-301

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_k$ be independent bounded random variables with $\mathbf E\xi_k=0$, $\mathbf E\xi_k^2=V_k>0$, and $f(k)$, $g(k)$ be some deterministic functions. We investigate the rough asymptotics of the probability $$ \mathbf P\biggl\{\biggl|\sum_1^k\xi_i+f(k)\biggr|\le g(k),\ m\le k\le n\biggr\},\qquad n\to\infty. $$ It is proved that under some assumptions on $f$ and $g$ this asymptotics has the form $$ \operatorname{exp}\biggl\{-\frac{\pi^2}{8}\sum_{k=m}^n V_k g^{-2}(k)(1+o(1))\biggr\} $$ or $$ \operatorname{exp}\biggl\{-1/2\sum_{k=m+1}^nV_k^{-1}|f(k)-f(k-1)|^2(1+o(1))\biggr\}. $$ Our method is based on a change of probability measure which reduces the problem to the case $f(k)\equiv 0$, $g(k)\equiv 1$.
@article{TVP_1981_26_2_a3,
     author = {A. A. Novikov},
     title = {On the exit time of sums of bounded random variables out of a~curve strip},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {287--301},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a3/}
}
TY  - JOUR
AU  - A. A. Novikov
TI  - On the exit time of sums of bounded random variables out of a~curve strip
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1981
SP  - 287
EP  - 301
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a3/
LA  - ru
ID  - TVP_1981_26_2_a3
ER  - 
%0 Journal Article
%A A. A. Novikov
%T On the exit time of sums of bounded random variables out of a~curve strip
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1981
%P 287-301
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a3/
%G ru
%F TVP_1981_26_2_a3
A. A. Novikov. On the exit time of sums of bounded random variables out of a~curve strip. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 287-301. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a3/