On the exit time of sums of bounded random variables out of a~curve strip
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 287-301
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_k$ be independent bounded random variables with $\mathbf E\xi_k=0$, $\mathbf E\xi_k^2=V_k>0$,
and $f(k)$, $g(k)$ be some deterministic functions. We investigate the rough asymptotics of the probability
$$
\mathbf P\biggl\{\biggl|\sum_1^k\xi_i+f(k)\biggr|\le g(k),\ m\le k\le n\biggr\},\qquad n\to\infty.
$$
It is proved that under some assumptions on $f$ and $g$ this asymptotics has the form
$$
\operatorname{exp}\biggl\{-\frac{\pi^2}{8}\sum_{k=m}^n V_k g^{-2}(k)(1+o(1))\biggr\}
$$
or
$$
\operatorname{exp}\biggl\{-1/2\sum_{k=m+1}^nV_k^{-1}|f(k)-f(k-1)|^2(1+o(1))\biggr\}.
$$
Our method is based on a change of probability measure which reduces the problem to the case
$f(k)\equiv 0$, $g(k)\equiv 1$.
@article{TVP_1981_26_2_a3,
author = {A. A. Novikov},
title = {On the exit time of sums of bounded random variables out of a~curve strip},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {287--301},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a3/}
}
A. A. Novikov. On the exit time of sums of bounded random variables out of a~curve strip. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 2, pp. 287-301. http://geodesic.mathdoc.fr/item/TVP_1981_26_2_a3/