On the correctness of statistical point estimation problem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 15-31
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Strongly consistent (in the sense of convergence in variation) decision procedures $\Pi=\{\Pi_N\}$ for the statistical point estimation problem are considered. We prove that the statistical problem of estimation the probability distribution $P$ on $E=\{x\colon 0\le x\le 1\}$ by means of independent $P$-distributed bservations $x_i^*$ ($i=1,\dots,N$, $N\to\infty$) without additional a priori information about $P$ is incorrect in this sense. The unknown $P$ being a priori absolutely continuous, the problem turns out to be correct [15]. However this modified problem is found not to admit the uniformly consistent decision procedures. Also it does not admit the procedures with vanishing (at $N\to\infty$) supremum of the risk, when a loss function is given by a Kullback information deviation $I[P_N^*:P]$.
			
            
            
            
          
        
      @article{TVP_1981_26_1_a1,
     author = {N. N. \v{C}encov},
     title = {On the correctness of statistical point estimation problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {15--31},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a1/}
}
                      
                      
                    N. N. Čencov. On the correctness of statistical point estimation problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 26 (1981) no. 1, pp. 15-31. http://geodesic.mathdoc.fr/item/TVP_1981_26_1_a1/
