A remark on a weak convergence of a linear decomposable
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 633-635

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the interpretation of statistics $$ \sum_{i=1}^N\nu_{in}l_i $$ (where $\nu_{in}$ is a frequency of the $i$-th outcome in the polynomial scheme with $N$ outcomes and $n$ trials and $l_i$ are coefficients) as a stochastic integral of the empirical process permits to investigate its asymptotic properties in a more general situation (and in a simpler manner) than in [2].
@article{TVP_1980_25_3_a21,
     author = {E. V. Hmaladze},
     title = {A remark on a weak convergence of a linear decomposable},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {633--635},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/}
}
TY  - JOUR
AU  - E. V. Hmaladze
TI  - A remark on a weak convergence of a linear decomposable
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 633
EP  - 635
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/
LA  - ru
ID  - TVP_1980_25_3_a21
ER  - 
%0 Journal Article
%A E. V. Hmaladze
%T A remark on a weak convergence of a linear decomposable
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 633-635
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/
%G ru
%F TVP_1980_25_3_a21
E. V. Hmaladze. A remark on a weak convergence of a linear decomposable. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 633-635. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/