A remark on a weak convergence of a linear decomposable
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 633-635
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that the interpretation of statistics $$ \sum_{i=1}^N\nu_{in}l_i $$ (where $\nu_{in}$ is a frequency of the $i$-th outcome in the polynomial scheme with $N$ outcomes and $n$ trials and $l_i$ are coefficients) as a stochastic integral of the empirical process permits to investigate its asymptotic properties in a more general situation (and in a simpler manner) than in [2].
@article{TVP_1980_25_3_a21,
author = {E. V. Hmaladze},
title = {A remark on a weak convergence of a linear decomposable},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {633--635},
year = {1980},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/}
}
E. V. Hmaladze. A remark on a weak convergence of a linear decomposable. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 633-635. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/