A remark on a weak convergence of a linear decomposable
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 633-635
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We show that the interpretation of statistics
$$
\sum_{i=1}^N\nu_{in}l_i
$$
(where $\nu_{in}$ is a frequency of the $i$-th outcome in the polynomial scheme with $N$ outcomes
and $n$ trials and $l_i$ are coefficients) as a stochastic integral of the empirical process permits
to investigate its asymptotic properties in a more general situation (and in a simpler
manner) than in [2].
			
            
            
            
          
        
      @article{TVP_1980_25_3_a21,
     author = {E. V. Hmaladze},
     title = {A remark on a weak convergence of a linear decomposable},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {633--635},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/}
}
                      
                      
                    E. V. Hmaladze. A remark on a weak convergence of a linear decomposable. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 3, pp. 633-635. http://geodesic.mathdoc.fr/item/TVP_1980_25_3_a21/
