Any Markov process in a~Borel space has a~transition function
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 389-393

Voir la notice de l'article provenant de la source Math-Net.Ru

The most natural way to define «Markov process» $x_t$ is to say that it is a stochastic process with the Markov property. However, in some of the most interesting applications it is possible to consider only the processes with transition function, which is a family $\{p_t^s(x,\Gamma)\}$ of conditional distributions of $x_t$ given $x_s$, satisfying Kolmogorov–Chapman equation $p_t^s p_u^t=p_u^s$, $s$. We prove that the Markov process has the transition function if its state space is universal (i. e. it is isomorphic to a universally measurable subset of a Polish space).
@article{TVP_1980_25_2_a16,
     author = {S. E. Kuznecov},
     title = {Any {Markov} process in {a~Borel} space has a~transition function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {389--393},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a16/}
}
TY  - JOUR
AU  - S. E. Kuznecov
TI  - Any Markov process in a~Borel space has a~transition function
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 389
EP  - 393
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a16/
LA  - ru
ID  - TVP_1980_25_2_a16
ER  - 
%0 Journal Article
%A S. E. Kuznecov
%T Any Markov process in a~Borel space has a~transition function
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 389-393
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a16/
%G ru
%F TVP_1980_25_2_a16
S. E. Kuznecov. Any Markov process in a~Borel space has a~transition function. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 2, pp. 389-393. http://geodesic.mathdoc.fr/item/TVP_1980_25_2_a16/