Asymptotic normality of the number of empty cells for group
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 83-91

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n$ groups of particles ($s$ particles in group) be placed independently in $N$ cells and probabilities of all dispositions are equal. Let $\mu_0$ be the number of empty cells. Convergence of moments of distribution of $(D\mu_0)^{-1/2}(\mu_0-E\mu_0)$ to the moments of standard normal distribution is proved.
@article{TVP_1980_25_1_a6,
     author = {V. G. Mikhaǐlov},
     title = {Asymptotic normality of the number of empty cells for group},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {83--91},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a6/}
}
TY  - JOUR
AU  - V. G. Mikhaǐlov
TI  - Asymptotic normality of the number of empty cells for group
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 83
EP  - 91
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a6/
LA  - ru
ID  - TVP_1980_25_1_a6
ER  - 
%0 Journal Article
%A V. G. Mikhaǐlov
%T Asymptotic normality of the number of empty cells for group
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 83-91
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a6/
%G ru
%F TVP_1980_25_1_a6
V. G. Mikhaǐlov. Asymptotic normality of the number of empty cells for group. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 83-91. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a6/