Inequalities for the concentration function
Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 178-183

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\dots,\xi_n$ be independent random variables, $S_n=\xi_1+\dots+\xi_n$. The concentration function $Q(\xi,\lambda)$ of a random variable $\xi$ is defined by $$ Q(\xi,\lambda)=\sup_x\,\mathbf P\{x\le\xi\le x+\lambda\},\qquad \lambda>0. $$ We prove, that there exists a universal constant $C\infty$ such that for any $n$ and arbitrary $\lambda_1,\dots,\lambda_n\in(0,2L]$ $$ Q(S_n,L)\le CL\biggl( \sum_{k=1}^n\mathbf{M}\biggl(|\xi_k^s|\wedge\frac{\lambda_k}2\biggr)^2Q^{-2}(\xi_k,\lambda_k)\biggr)^{-1/2}, $$ where $\xi^s_k$ t is the symmetrization of $\xi_k$ and $a\wedge b=\min (a,b)$.
@article{TVP_1980_25_1_a19,
     author = {A. L. Miro\v{s}nikov and B. A. Rogozin},
     title = {Inequalities for the concentration function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {178--183},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a19/}
}
TY  - JOUR
AU  - A. L. Mirošnikov
AU  - B. A. Rogozin
TI  - Inequalities for the concentration function
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1980
SP  - 178
EP  - 183
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a19/
LA  - ru
ID  - TVP_1980_25_1_a19
ER  - 
%0 Journal Article
%A A. L. Mirošnikov
%A B. A. Rogozin
%T Inequalities for the concentration function
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1980
%P 178-183
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a19/
%G ru
%F TVP_1980_25_1_a19
A. L. Mirošnikov; B. A. Rogozin. Inequalities for the concentration function. Teoriâ veroâtnostej i ee primeneniâ, Tome 25 (1980) no. 1, pp. 178-183. http://geodesic.mathdoc.fr/item/TVP_1980_25_1_a19/