Asymptotic, analysis of the distributions in problems with two boundaries.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 475-485

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_k\}_{k=1}^{\infty}$ be a sequence of i. i. d. integer valued random variables, $\mathbf M\xi_i=0$, $S_n=\xi_1+\dots+\xi_n\ (S_0=0)$, and the function $\mathbf M(\lambda^{\xi_1}\colon\xi_1>0)$ is rational. For $a>0$, $b>0$ we introduce the random variable $$ N=\min\{k\colon S_k\notin[-a,b)\}. $$ The complete asymptotic (as $n\to\infty$) expansions of the probabilities $$ \mathbf P\{S_n=k,\ N>n\},\ k\in[-a,b),\quad \mathbf P\{S_N=k,\ N=n\},\ k\notin[-a,b), $$ are obtained for $a=a(n)=o(n)$, $b=b(n)=o(n)$, $a\to\infty$, $b\to\infty$, $a+b\ge C\sqrt n$.
@article{TVP_1979_24_3_a2,
     author = {V. I. Lotov},
     title = {Asymptotic, analysis of the distributions in problems with two {boundaries.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {475--485},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a2/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - Asymptotic, analysis of the distributions in problems with two boundaries.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 475
EP  - 485
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a2/
LA  - ru
ID  - TVP_1979_24_3_a2
ER  - 
%0 Journal Article
%A V. I. Lotov
%T Asymptotic, analysis of the distributions in problems with two boundaries.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 475-485
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a2/
%G ru
%F TVP_1979_24_3_a2
V. I. Lotov. Asymptotic, analysis of the distributions in problems with two boundaries.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 475-485. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a2/