Asymptotic, analysis of the distributions in problems with two boundaries.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 475-485
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{\xi_k\}_{k=1}^{\infty}$ be a sequence of i. i. d. integer valued random variables,
$\mathbf M\xi_i=0$, $S_n=\xi_1+\dots+\xi_n\ (S_0=0)$, and the function
$\mathbf M(\lambda^{\xi_1}\colon\xi_1>0)$ is rational. For $a>0$, $b>0$ we introduce the random variable
$$
N=\min\{k\colon S_k\notin[-a,b)\}.
$$ The complete asymptotic (as $n\to\infty$) expansions of the probabilities
$$
\mathbf P\{S_n=k,\ N>n\},\ k\in[-a,b),\quad
\mathbf P\{S_N=k,\ N=n\},\ k\notin[-a,b),
$$
are obtained for $a=a(n)=o(n)$, $b=b(n)=o(n)$, $a\to\infty$, $b\to\infty$, $a+b\ge C\sqrt n$.
@article{TVP_1979_24_3_a2,
author = {V. I. Lotov},
title = {Asymptotic, analysis of the distributions in problems with two {boundaries.~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {475--485},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a2/}
}
V. I. Lotov. Asymptotic, analysis of the distributions in problems with two boundaries.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 3, pp. 475-485. http://geodesic.mathdoc.fr/item/TVP_1979_24_3_a2/