On the products of random matrices and operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 361-370

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$ be a stationary ergodic Markovian process on a measurable space $\Xi$ and $X$ be a measurable mapping of $\Xi$ into the group $SL(m,R)$. We prove that, under some conditions, the norm of the product $$ X(\xi_1)X(\xi_2)\dots X(\xi_n) $$ of random unimodular matrices grows exponentially with probability 1 (Theorem 1). The proof is based on some facts from the theory of unitary representations of the group $SL(m,R)$ and on the theorem on the exponential decrease of the mean of the product of random unitary operators on a separable Hilbert space (Theorem 2).
@article{TVP_1979_24_2_a8,
     author = {A. D. Vircer},
     title = {On the products of random matrices and operators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {361--370},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a8/}
}
TY  - JOUR
AU  - A. D. Vircer
TI  - On the products of random matrices and operators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 361
EP  - 370
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a8/
LA  - ru
ID  - TVP_1979_24_2_a8
ER  - 
%0 Journal Article
%A A. D. Vircer
%T On the products of random matrices and operators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 361-370
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a8/
%G ru
%F TVP_1979_24_2_a8
A. D. Vircer. On the products of random matrices and operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 2, pp. 361-370. http://geodesic.mathdoc.fr/item/TVP_1979_24_2_a8/