Stationary generalized regenerative processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 78-90

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the so-called «inversion formula» from the theory of stochastic point processes, the concept of stationary and synchroneous version of a generalized regenerative process is introduced. Such processes are generated by given strictly stationary sequences of regeneration cycles without any independence assumptions in general. An ergodic theorem and a formula are proved which expresses the stationary distribution of the process as the time average of the process over a regeneration cycle. Some well-known classes of stochastic processes are special cases of the considered model when the cycles form a Markov chain.
@article{TVP_1979_24_1_a5,
     author = {P. Franken and A. Streller},
     title = {Stationary generalized regenerative processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {78--90},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a5/}
}
TY  - JOUR
AU  - P. Franken
AU  - A. Streller
TI  - Stationary generalized regenerative processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 78
EP  - 90
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a5/
LA  - ru
ID  - TVP_1979_24_1_a5
ER  - 
%0 Journal Article
%A P. Franken
%A A. Streller
%T Stationary generalized regenerative processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 78-90
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a5/
%G ru
%F TVP_1979_24_1_a5
P. Franken; A. Streller. Stationary generalized regenerative processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 78-90. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a5/