Diffusion processes with generalized drift vector
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 62-77

Voir la notice de l'article provenant de la source Math-Net.Ru

Continuous Markov processes in $R^{m}$ are constructed or which the diffusion coefficients exist in a generalized sense. These generalized coefficients are: a non-singular Hölder continuous diffusion matrix and a drift vector which is represented in the form $a(x)=\overline N(x)\delta_S(x)$ where $S$ is a $(m-1)$-dimensional surface, $\overline N(x)$ is a vector field and $\delta_S(x)$ is a generalized function the action of which onto basic functions is reduced to integration over $S$.
@article{TVP_1979_24_1_a4,
     author = {N. I. Portenko},
     title = {Diffusion processes with generalized drift vector},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {62--77},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a4/}
}
TY  - JOUR
AU  - N. I. Portenko
TI  - Diffusion processes with generalized drift vector
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1979
SP  - 62
EP  - 77
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a4/
LA  - ru
ID  - TVP_1979_24_1_a4
ER  - 
%0 Journal Article
%A N. I. Portenko
%T Diffusion processes with generalized drift vector
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1979
%P 62-77
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a4/
%G ru
%F TVP_1979_24_1_a4
N. I. Portenko. Diffusion processes with generalized drift vector. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 62-77. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a4/