Some examples of equivalent and orthogonal Gaussian distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 160-164
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $t = (t_1,\dots, t_N)\subset T\in E^N$, $\lambda=(\lambda_1,\dots,\lambda_N)\in E^N$, $E^N$ be the $N$-dimensional Euclidean space, $\xi_i\colon T \to E^1$, $i=1,2$, be homogeneous Gaussian fields, and let $\nu_1$, $\nu_2$ be measures induced by $\xi_1$, $\xi_2$. The random fields $\xi_1$ and $\xi_2$ are supposed to have the rational spectral densities. Three examples illustrating the difference between the cases $N=1$ and $N\ge 2$ are given.
@article{TVP_1979_24_1_a13,
author = {S. M. Krasnits'kiǐ},
title = {Some examples of equivalent and orthogonal {Gaussian} distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {160--164},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a13/}
}
S. M. Krasnits'kiǐ. Some examples of equivalent and orthogonal Gaussian distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 24 (1979) no. 1, pp. 160-164. http://geodesic.mathdoc.fr/item/TVP_1979_24_1_a13/