Time-sharing service systems.~II
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 331-339

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows how to find the service order that minimizes an additive loss functional. Consider a characteristical result (see example 3). Independent Poisson inputs come to a service system. The service time of the $i$-th item of the input has distribution function $B_i(x)$. Interruption of service is possible. Let $c_i(t)$ be the cost of waiting in the time unit for the $(i,t)$-item, i. e. for the $i$-th item of the input which has been served for the period of time equal to $t\ge 0$. Let each $(i,t)$-item have now a priority index. $$ R_i(t)=\sup_{x>t}\biggl\{[c_i(t)(1-B_i(t))-c_i(x)(1-B_i(x))]\biggl[\int_t^x(1-B_i(u))\,du\biggr]^{-1}\biggr\}. $$ Then the optimal service order (that minimizes the mean loss in the unit time in stationary regime) is the following: those items should have priority which have the maximum priority index. In particular, if $\gamma_i(t)$ is the mean time necessary to complete the service of the $(i,t)$-item and, for each $i$, the function $c_i(t)/\gamma_i(t)$ is non-decreasing as a function of $t$, it means that $R_i(t)=c_i(t)/\gamma_i(t)$.
@article{TVP_1978_23_2_a6,
     author = {G. P. Klimov},
     title = {Time-sharing service {systems.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {331--339},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a6/}
}
TY  - JOUR
AU  - G. P. Klimov
TI  - Time-sharing service systems.~II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 331
EP  - 339
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a6/
LA  - ru
ID  - TVP_1978_23_2_a6
ER  - 
%0 Journal Article
%A G. P. Klimov
%T Time-sharing service systems.~II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 331-339
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a6/
%G ru
%F TVP_1978_23_2_a6
G. P. Klimov. Time-sharing service systems.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 331-339. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a6/