On asymptotically optimal hypotheses testing in quantum statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 429-432
Cet article a éte moissonné depuis la source Math-Net.Ru
The mathematical formulation of a hypothesis testing problem in quantum statistics under consideration reduces to the following. Let $\{\psi_j\}$ be a given basis in a $d$-dimensional unitary space. Find an orthonormal basis $\{e_j\}$ which approximates the basis $\{\psi_j\}$ in the sense that the value of (1) is minimal. An asymptotic solution to this problem is given for «almost orthogonal» vectors $\psi_j$. An asymptotically optimal basis is $\widehat\psi_j=\Gamma^{-1/2}\psi_j$, where $\Gamma$ is the Gram operator of the system $\{\psi_j\}$.
@article{TVP_1978_23_2_a20,
author = {A. S. Holevo},
title = {On asymptotically optimal hypotheses testing in quantum statistics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {429--432},
year = {1978},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a20/}
}
A. S. Holevo. On asymptotically optimal hypotheses testing in quantum statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 429-432. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a20/