On optimal stopping of Wiener process with incomplete data
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 143-148
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the optimal stopping problem for a Wiener process $W$ with reward $g(t,x)=x/(1+t)$ under the assumption that only the process
$$
\xi_t^{\varepsilon}=\int_0^t W_s\,ds+\varepsilon\widetilde W_t
$$
is observed, where $\varepsilon>0$ and $\widetilde W$ is a Wiener process independent of $W$.
The convergence rate of the optimal mean reward $s^{\varepsilon}$ in this «$\varepsilon$-problem» to the optimal mean reward $s^0$ in the «0-problem» when $\varepsilon\to 0$ turns out to be of order $\sqrt{\varepsilon}$. It is shown that the observation domain is limited by a function for which an equation is derived.
@article{TVP_1978_23_1_a11,
author = {H. F\"ahrmann},
title = {On optimal stopping of {Wiener} process with incomplete data},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {143--148},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a11/}
}
H. Fährmann. On optimal stopping of Wiener process with incomplete data. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 143-148. http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a11/