On optimal stopping of Wiener process with incomplete data
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 143-148

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal stopping problem for a Wiener process $W$ with reward $g(t,x)=x/(1+t)$ under the assumption that only the process $$ \xi_t^{\varepsilon}=\int_0^t W_s\,ds+\varepsilon\widetilde W_t $$ is observed, where $\varepsilon>0$ and $\widetilde W$ is a Wiener process independent of $W$. The convergence rate of the optimal mean reward $s^{\varepsilon}$ in this «$\varepsilon$-problem» to the optimal mean reward $s^0$ in the «0-problem» when $\varepsilon\to 0$ turns out to be of order $\sqrt{\varepsilon}$. It is shown that the observation domain is limited by a function for which an equation is derived.
@article{TVP_1978_23_1_a11,
     author = {H. F\"ahrmann},
     title = {On optimal stopping of {Wiener} process with incomplete data},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a11/}
}
TY  - JOUR
AU  - H. Fährmann
TI  - On optimal stopping of Wiener process with incomplete data
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 143
EP  - 148
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a11/
LA  - ru
ID  - TVP_1978_23_1_a11
ER  - 
%0 Journal Article
%A H. Fährmann
%T On optimal stopping of Wiener process with incomplete data
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 143-148
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a11/
%G ru
%F TVP_1978_23_1_a11
H. Fährmann. On optimal stopping of Wiener process with incomplete data. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 143-148. http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a11/