A queueing system with Erlang incoming flow with relative priority
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 860-866
Cet article a éte moissonné depuis la source Math-Net.Ru
A one-channel queueing system with waiting delay and relative priority is considered. Incoming claims are separated into $r$ classes, numbered by $1,\dots,r$, each claim getting to the $i$-th class with probability $p_i$ ($i=1,\dots,r$), $\displaystyle\sum_i p_i=1$. Claims of the $i$-th class have priority with respect to those of the $j$-th class for $j>i$. Claims arrive at the input of the system according to the Erlang law. Service times are jointly independent absolutely continuous random variables. To each priority class, there corresponds a distribution function of the service time. The behaviour of the queue size (in non-stationary regime) and busy period is studied.
@article{TVP_1977_22_4_a18,
author = {V. G. U\v{s}akov},
title = {A queueing system with {Erlang} incoming flow with relative priority},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {860--866},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a18/}
}
V. G. Ušakov. A queueing system with Erlang incoming flow with relative priority. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 860-866. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a18/