On the existence of optional versions for martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 620-622
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $(\Omega,\mathscr F,\mathbf P)$ be a complete probability space and $(\mathscr F_t)$, $t\in[0,\infty)$, be an increasing family of $\sigma$-subalgebras of $\mathscr F$, $\mathscr F_t$ being not necessarily complete and right continuous. A stochastic process $(X_t)$, $t\in [0,\infty)$, is said to be optional if it is measurable with respect to the $\sigma$-algebra $\mathscr O$ in $\Omega\times[0,\infty)$ generated by all the processes which are well adapted with respect to $(\mathscr F_t)$, right continuous and have limits from the left at each point. The purpose of this paper is to prove the following Theorem. Let $X$ be an integrable random variable. Then there exists a unique (to within indistinguishability) version $(X_t)$ of the martingale $(\mathbf M[X\mid\mathscr F_t])$ such that $(X_t)$ is optional and, for any stopping time $T$, $$ X_TI_{(T<\infty)}=\mathbf M[XI_{(T<\infty)}\mid\mathscr F_t]\ a.\,s. $$
@article{TVP_1977_22_3_a17,
author = {L. I. Gal'\v{c}uk},
title = {On the existence of optional versions for martingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {620--622},
year = {1977},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a17/}
}
L. I. Gal'čuk. On the existence of optional versions for martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 620-622. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a17/