On the existence of optional versions for martingales
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 620-622
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $(\Omega,\mathscr F,\mathbf P)$ be a complete probability space and $(\mathscr F_t)$, $t\in[0,\infty)$, be an increasing family of $\sigma$-subalgebras of $\mathscr F$, $\mathscr F_t$ being not necessarily complete and right continuous.
A stochastic process $(X_t)$, $t\in [0,\infty)$, is said to be optional if it is measurable with respect to the $\sigma$-algebra $\mathscr O$ in $\Omega\times[0,\infty)$ generated by all the processes which are well adapted with respect to $(\mathscr F_t)$, right continuous and have limits from the left at each point.
The purpose of this paper is to prove the following
Theorem. Let $X$ be an integrable random variable. Then there exists a unique (to within indistinguishability) version $(X_t)$ of the martingale $(\mathbf M[X\mid\mathscr F_t])$ such that $(X_t)$ is optional and, for any stopping time $T$,
$$
X_TI_{(T\infty)}=\mathbf M[XI_{(T\infty)}\mid\mathscr F_t]\ a.\,s.
$$
            
            
            
          
        
      @article{TVP_1977_22_3_a17,
     author = {L. I. Gal'\v{c}uk},
     title = {On the existence of optional versions for martingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {620--622},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a17/}
}
                      
                      
                    L. I. Gal'čuk. On the existence of optional versions for martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 620-622. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a17/
