Canonical representations of second order stochastic processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 429-435
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The representation
\begin{equation}
x(t)=\sum_{n=1}^N\int_{-\infty}^tF_n(t,u)\,dz_n(u)
\end{equation}
of a second order stochastic process $x(t)$, $t\in R^1$, is considered as a sum of representations for $N$ mutually orthogonal processes
\begin{equation}
x_n(t)=\int_{-\infty}^tF_n(t,u)\,dz_n(u).
\end{equation}
Conditions are given under which representation (1) is canonical or proper canonical (in T. Hida's terminology). These conditions are formulated in terms of the processes $x_1,\dots,x_N$ and their representations (2).
			
            
            
            
          
        
      @article{TVP_1977_22_2_a23,
     author = {T. N. Siraya},
     title = {Canonical representations of second order stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {429--435},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a23/}
}
                      
                      
                    T. N. Siraya. Canonical representations of second order stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 429-435. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a23/
