A~local limit theorem for products of random matrices
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 209-221
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The product $g(n)=g_1\dots g_n$ of random identically distributed independent matrices is represented in the form: $g(n)=x(n)\delta(n)v(n)$, where $x(n)$ and $v(n)$ are unitary matrices,
$$
\delta(n)=\operatorname{diag}(\exp\tau_1(n),\dots,\exp\tau_m(n)),\qquad\tau_1(n)\dots\tau_m(n).
$$ Under conditions 1*) and 2*) the following theorem is proved:
The distribution of $g(n)$ can be decomposed into the sum of two measures. The first has the full variation $O(1/n)$. The second is given by the joint density $p_n^*$ of the random variables
$$
x(n),\tau^*(n)=\frac{1}{\sqrt n}(\tau(n)-na),v(n),
$$
and
$$
\sup_{x,t,v}|p_n^*(x,t,v)-\nu_X(x)N_{\sigma^2}(t)\nu_n(v)|\to 0,
$$
where $N_{\sigma^2}(t)$ is the normal density on the plane $t_1+\dots+t_m=0$ with non-degenerate, on this plane, variance-covariance matrix $\sigma^2$; $a=(a_1,\dots,a_m)$, $a_1\dots$, is а constant vector, and $\nu_x(n)$ and $\nu_n(v)$ are some probability densities on a unitary subgroup ($\nu_n(v)$ is one and the same for all even $n$ and one and the same, may be different, for all odd $n$).
			
            
            
            
          
        
      @article{TVP_1977_22_2_a0,
     author = {V. N. Tutubalin},
     title = {A~local limit theorem for products of random matrices},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--221},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a0/}
}
                      
                      
                    V. N. Tutubalin. A~local limit theorem for products of random matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 209-221. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a0/
