On subordinated processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 131-136

Voir la notice de l'article provenant de la source Math-Net.Ru

Second order processes $x(t)$, $y(t)$ ($t\in T\subset R^1$) are considered as curves in the Hilbert space $\mathscr H=\{\xi\colon \mathbf E\xi=0,\mathbf E|\xi|^2\infty\}$. The process $y(t)$ is subordinated to $x(t)$ if $H(y)\subset H(x)$, where $H(x)\subset \mathscr H$ is the closed linear span of the random variables $x(t)$, $t\in T$. Theorem 1. {\it Let processes $x(t)$ and $y(t)$, $t\in T$, have correlation functions $R(s,t)$ and $B(s,t)$, and $\Phi(s,t)=\mathbf Ex(t)\overline{y(t)}$ be their cross-correlation function. The process $y(t)$ is subordinated to $x(t)$, if and only if the functions $F_t=\overline{\Phi(\cdot,t)}$ belong to the Hilbert space $H(R)$ with the reproducing kernel $R(s,t)$, and their scalar products in $H(R)$ are $\langle F_s,F_t\rangle_R=B(s,t)$.} An analogous result holds for generalized processes. Representations of a process as the sum of two orthogonal processes, subordinated to it, are also considered.
@article{TVP_1977_22_1_a10,
     author = {T. N. Siraya},
     title = {On subordinated processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {131--136},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/}
}
TY  - JOUR
AU  - T. N. Siraya
TI  - On subordinated processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 131
EP  - 136
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/
LA  - ru
ID  - TVP_1977_22_1_a10
ER  - 
%0 Journal Article
%A T. N. Siraya
%T On subordinated processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 131-136
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/
%G ru
%F TVP_1977_22_1_a10
T. N. Siraya. On subordinated processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 131-136. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/