On subordinated processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 131-136
Cet article a éte moissonné depuis la source Math-Net.Ru
Second order processes $x(t)$, $y(t)$ ($t\in T\subset R^1$) are considered as curves in the Hilbert space $\mathscr H=\{\xi\colon \mathbf E\xi=0,\mathbf E|\xi|^2<\infty\}$. The process $y(t)$ is subordinated to $x(t)$ if $H(y)\subset H(x)$, where $H(x)\subset \mathscr H$ is the closed linear span of the random variables $x(t)$, $t\in T$. Theorem 1. {\it Let processes $x(t)$ and $y(t)$, $t\in T$, have correlation functions $R(s,t)$ and $B(s,t)$, and $\Phi(s,t)=\mathbf Ex(t)\overline{y(t)}$ be their cross-correlation function. The process $y(t)$ is subordinated to $x(t)$, if and only if the functions $F_t=\overline{\Phi(\cdot,t)}$ belong to the Hilbert space $H(R)$ with the reproducing kernel $R(s,t)$, and their scalar products in $H(R)$ are $\langle F_s,F_t\rangle_R=B(s,t)$.} An analogous result holds for generalized processes. Representations of a process as the sum of two orthogonal processes, subordinated to it, are also considered.
@article{TVP_1977_22_1_a10,
author = {T. N. Siraya},
title = {On subordinated processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {131--136},
year = {1977},
volume = {22},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/}
}
T. N. Siraya. On subordinated processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 131-136. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/