On subordinated processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 131-136
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Second order processes $x(t)$, $y(t)$ ($t\in T\subset R^1$) are considered as curves in the Hilbert space $\mathscr H=\{\xi\colon \mathbf E\xi=0,\mathbf E|\xi|^2\infty\}$. The process $y(t)$ is subordinated to $x(t)$ if $H(y)\subset H(x)$, where $H(x)\subset \mathscr H$ is the closed linear span of the random variables $x(t)$, $t\in T$.
Theorem 1. {\it Let processes $x(t)$ and $y(t)$, $t\in T$, have correlation functions $R(s,t)$ and $B(s,t)$, and $\Phi(s,t)=\mathbf Ex(t)\overline{y(t)}$ be their cross-correlation function.
The process $y(t)$ is subordinated to $x(t)$, if and only if the functions $F_t=\overline{\Phi(\cdot,t)}$ belong to the Hilbert space $H(R)$ with the reproducing kernel $R(s,t)$, and their scalar products in $H(R)$ are $\langle F_s,F_t\rangle_R=B(s,t)$.}
An analogous result holds for generalized processes.
Representations of a process as the sum of two orthogonal processes, subordinated to it, are also considered.
			
            
            
            
          
        
      @article{TVP_1977_22_1_a10,
     author = {T. N. Siraya},
     title = {On subordinated processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {131--136},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/}
}
                      
                      
                    T. N. Siraya. On subordinated processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 131-136. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a10/
