On the multiplicity of a~sum of orthogonal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 880-884
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $x_1(t),\dots,x_n(t)$, $t\in R^1$, be mutually orthogonal stochastic processes of multiplicity 1, $\displaystyle x_0(t)=\sum_1^nx_j(t)$. The problem is to determine the multiplicity of $x_0(t)$.
In the note, the following two special cases are considered:
1) the processes $x_1,\dots,x_n$ are spectrally orthogonal, i. e. their closed linear spans satisfy the condition
$$
H(x_0,t)=\sum_1^n\oplus H(x_j,t);
$$ 2) $n=2$, and $x_1$ and $x_2$ may be either ordinary or generalized stochastic processes.
@article{TVP_1976_21_4_a20,
author = {T. N. Siraya},
title = {On the multiplicity of a~sum of orthogonal processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {880--884},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a20/}
}
T. N. Siraya. On the multiplicity of a~sum of orthogonal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 880-884. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a20/