On the multiplicity of a~sum of orthogonal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 880-884

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_1(t),\dots,x_n(t)$, $t\in R^1$, be mutually orthogonal stochastic processes of multiplicity 1, $\displaystyle x_0(t)=\sum_1^nx_j(t)$. The problem is to determine the multiplicity of $x_0(t)$. In the note, the following two special cases are considered: 1) the processes $x_1,\dots,x_n$ are spectrally orthogonal, i. e. their closed linear spans satisfy the condition $$ H(x_0,t)=\sum_1^n\oplus H(x_j,t); $$ 2) $n=2$, and $x_1$ and $x_2$ may be either ordinary or generalized stochastic processes.
@article{TVP_1976_21_4_a20,
     author = {T. N. Siraya},
     title = {On the multiplicity of a~sum of orthogonal processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {880--884},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a20/}
}
TY  - JOUR
AU  - T. N. Siraya
TI  - On the multiplicity of a~sum of orthogonal processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 880
EP  - 884
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a20/
LA  - ru
ID  - TVP_1976_21_4_a20
ER  - 
%0 Journal Article
%A T. N. Siraya
%T On the multiplicity of a~sum of orthogonal processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 880-884
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a20/
%G ru
%F TVP_1976_21_4_a20
T. N. Siraya. On the multiplicity of a~sum of orthogonal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 880-884. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a20/