Asymptotic expansions in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 810-820

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x_1,x_2,\dots$ be a sequence of independent identically distributed random variables with zero means and unit variances. Put $$ F_n(x)=\mathbf P\{(x_1+\dots+x_n)/\sqrt n\}. $$ Conditions are given which are necessary and sufficient for the relation $$ F_n(x)=\sum_{\nu=0}^{s-2}n^{-\nu/2}f_\nu(x)+O(\varepsilon_n),\quad n\to\infty, $$ to hold uniformly in $x$, where $s\ge2$, the sequence $\varepsilon_n$ is such that $$ \varepsilon_nn^{(s-2)/2}\to0,\quad\varepsilon_n\ge n^{-(s-1)/2},\quad n\to\infty, $$ the functions $t_\nu(x)$ are independent of $n$ and satisfy some conditions at the origin. We consider also local limit theorems.
@article{TVP_1975_20_4_a8,
     author = {L. V. Rozovskii},
     title = {Asymptotic expansions in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {810--820},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Asymptotic expansions in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 810
EP  - 820
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/
LA  - ru
ID  - TVP_1975_20_4_a8
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Asymptotic expansions in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 810-820
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/
%G ru
%F TVP_1975_20_4_a8
L. V. Rozovskii. Asymptotic expansions in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 810-820. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/