Asymptotic expansions in the central limit theorem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 810-820
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $x_1,x_2,\dots$ be a sequence of independent identically distributed random variables with zero means and unit variances. Put
$$
F_n(x)=\mathbf P\{(x_1+\dots+x_n)/\sqrt n\}. 
$$ Conditions are given which are necessary and sufficient for the relation
$$
F_n(x)=\sum_{\nu=0}^{s-2}n^{-\nu/2}f_\nu(x)+O(\varepsilon_n),\quad n\to\infty,
$$
to hold uniformly in $x$, where $s\ge2$, the sequence $\varepsilon_n$ is such that
$$
\varepsilon_nn^{(s-2)/2}\to0,\quad\varepsilon_n\ge n^{-(s-1)/2},\quad n\to\infty,
$$
the functions $t_\nu(x)$ are independent of $n$ and satisfy some conditions at the origin. 
We consider also local limit theorems.
			
            
            
            
          
        
      @article{TVP_1975_20_4_a8,
     author = {L. V. Rozovskii},
     title = {Asymptotic expansions in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {810--820},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/}
}
                      
                      
                    L. V. Rozovskii. Asymptotic expansions in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 810-820. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/
