Asymptotic expansions in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 810-820
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $x_1,x_2,\dots$ be a sequence of independent identically distributed random variables with zero means and unit variances. Put $$ F_n(x)=\mathbf P\{(x_1+\dots+x_n)/\sqrt n<x\}. $$ Conditions are given which are necessary and sufficient for the relation $$ F_n(x)=\sum_{\nu=0}^{s-2}n^{-\nu/2}f_\nu(x)+O(\varepsilon_n),\quad n\to\infty, $$ to hold uniformly in $x$, where $s\ge2$, the sequence $\varepsilon_n$ is such that $$ \varepsilon_nn^{(s-2)/2}\to0,\quad\varepsilon_n\ge n^{-(s-1)/2},\quad n\to\infty, $$ the functions $t_\nu(x)$ are independent of $n$ and satisfy some conditions at the origin. We consider also local limit theorems.
@article{TVP_1975_20_4_a8,
author = {L. V. Rozovskii},
title = {Asymptotic expansions in the central limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {810--820},
year = {1975},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/}
}
L. V. Rozovskii. Asymptotic expansions in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 4, pp. 810-820. http://geodesic.mathdoc.fr/item/TVP_1975_20_4_a8/