On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 610-613
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An application of results concerning Markow processes to investigation of eigenvalues of linear operators is given.
Let $L^h=\sum b^i(x)\partial/\partial x^i+(h/2)\sum a^{ij}(x)\partial^2/\partial x^i\partial x^j$, for each $h>0$, be an elliptic operator in a bounded domain $D\subset R^r$; $\lambda_1(h)$ be the first (i.e., minimal) eigenvalue of the operator $-L^h$ with zero boundary condition on $\partial D$. It was shown in [2], [3] that, if in $D$ there exists a finite number of compacts containing stable $\omega$-limiting sets of the dynamical system $\dot x_t=b(x_t)$, then $\lambda_1(h)$ tends to 0 with an exponential rate when $h\downarrow0$. In this paper, we show that, if all solutions of $\dot x_t=b(x_t)$ sooner or later leave $D\bigcup\partial D$, then $\lambda_1(h)=c_1h^{-1}+o(h^{-1})$; a formula for the constant $c_1$ is given. The proof, as well as in [2], uses the diffusion process $(x_t^h,\mathbf P_x^h)$ corresponding to $L^h$ and the exit time $\tau^h$ for $D$ and the theorems of [1] concerning probabilities of certain nearly improbable events.
			
            
            
            
          
        
      @article{TVP_1975_20_3_a9,
     author = {A. D. Wentzel'},
     title = {On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--613},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/}
}
                      
                      
                    TY - JOUR AU - A. D. Wentzel' TI - On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1975 SP - 610 EP - 613 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/ LA - ru ID - TVP_1975_20_3_a9 ER -
%0 Journal Article %A A. D. Wentzel' %T On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives %J Teoriâ veroâtnostej i ee primeneniâ %D 1975 %P 610-613 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/ %G ru %F TVP_1975_20_3_a9
A. D. Wentzel'. On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 610-613. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/
