On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 610-613

Voir la notice de l'article provenant de la source Math-Net.Ru

An application of results concerning Markow processes to investigation of eigenvalues of linear operators is given. Let $L^h=\sum b^i(x)\partial/\partial x^i+(h/2)\sum a^{ij}(x)\partial^2/\partial x^i\partial x^j$, for each $h>0$, be an elliptic operator in a bounded domain $D\subset R^r$; $\lambda_1(h)$ be the first (i.e., minimal) eigenvalue of the operator $-L^h$ with zero boundary condition on $\partial D$. It was shown in [2], [3] that, if in $D$ there exists a finite number of compacts containing stable $\omega$-limiting sets of the dynamical system $\dot x_t=b(x_t)$, then $\lambda_1(h)$ tends to 0 with an exponential rate when $h\downarrow0$. In this paper, we show that, if all solutions of $\dot x_t=b(x_t)$ sooner or later leave $D\bigcup\partial D$, then $\lambda_1(h)=c_1h^{-1}+o(h^{-1})$; a formula for the constant $c_1$ is given. The proof, as well as in [2], uses the diffusion process $(x_t^h,\mathbf P_x^h)$ corresponding to $L^h$ and the exit time $\tau^h$ for $D$ and the theorems of [1] concerning probabilities of certain nearly improbable events.
@article{TVP_1975_20_3_a9,
     author = {A. D. Wentzel'},
     title = {On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--613},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/}
}
TY  - JOUR
AU  - A. D. Wentzel'
TI  - On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 610
EP  - 613
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/
LA  - ru
ID  - TVP_1975_20_3_a9
ER  - 
%0 Journal Article
%A A. D. Wentzel'
%T On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 610-613
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/
%G ru
%F TVP_1975_20_3_a9
A. D. Wentzel'. On the asymptotic behaviour of the first eigenvalue of a~second-order differential operator with small parameter by the higher derivatives. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 610-613. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a9/