On decompositions of radially symmetric distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 656-660

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P_1$ and $P_2$ be probability distributions in $R^n$, $n\ge2$, and $P=P_1*P_2$. If $P$ is radially symmetric (i.e. invariant with respect to rotation around some point) and satisfies the condition $$ \exists\varepsilon>0\colon P(\{x\in R^n\colon|x|>r\})=O(\exp\{-r^{2+\varepsilon}\}),\quad r\to\infty,\eqno(1) $$ then $P_1$ and $P_2$ must be radially symmetrical too. Condition (1) cannot be weakened by putting $\varepsilon=0$. A sufficient condition is obtained for a radially symmetric distribution to be indecomposable into two proper distributions. The uniform distribution in the re-dimensional unit ball is shown to be indecomposable for $n\ge3$.
@article{TVP_1975_20_3_a17,
     author = {L. S. Kudina},
     title = {On decompositions of radially symmetric distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {656--660},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a17/}
}
TY  - JOUR
AU  - L. S. Kudina
TI  - On decompositions of radially symmetric distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 656
EP  - 660
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a17/
LA  - ru
ID  - TVP_1975_20_3_a17
ER  - 
%0 Journal Article
%A L. S. Kudina
%T On decompositions of radially symmetric distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 656-660
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a17/
%G ru
%F TVP_1975_20_3_a17
L. S. Kudina. On decompositions of radially symmetric distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 656-660. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a17/