On decompositions of radially symmetric distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 656-660
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P_1$ and $P_2$ be probability distributions in $R^n$, $n\ge2$, and $P=P_1*P_2$. If $P$ is radially symmetric (i.e. invariant with respect to rotation around some point) and satisfies the condition
$$
\exists\varepsilon>0\colon P(\{x\in R^n\colon|x|>r\})=O(\exp\{-r^{2+\varepsilon}\}),\quad r\to\infty,\eqno(1)
$$
then $P_1$ and $P_2$ must be radially symmetrical too. Condition (1) cannot be weakened by putting $\varepsilon=0$.
A sufficient condition is obtained for a radially symmetric distribution to be indecomposable into two proper distributions. The uniform distribution in the re-dimensional unit ball is shown to be indecomposable for $n\ge3$.
@article{TVP_1975_20_3_a17,
author = {L. S. Kudina},
title = {On decompositions of radially symmetric distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {656--660},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a17/}
}
L. S. Kudina. On decompositions of radially symmetric distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 656-660. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a17/