On the statistics of branching processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 623-633
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mu_t(n)$, $t=0,1,2,\dots,$ be a Galton–Watson process, starting from $n$ particles. We show that when $n,t\to\infty$ the estimator
$$
\widehat A_t(n)=\frac{\sum_{k=1}^t\mu_k(n)}{\sum_{k=0}^{t-1}\mu_k(n)}
$$
for the expectation $A=\mathbf E\mu_1(1)$ is consistent and asymptoticaly unbiased. We obtain limit distributions for $\widehat A_t(n)$ in the subcritical, critical and supercritical cases.
			
            
            
            
          
        
      @article{TVP_1975_20_3_a11,
     author = {N. M. Yanev},
     title = {On the statistics of branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {623--633},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/}
}
                      
                      
                    N. M. Yanev. On the statistics of branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 623-633. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/
