On the statistics of branching processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 623-633

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu_t(n)$, $t=0,1,2,\dots,$ be a Galton–Watson process, starting from $n$ particles. We show that when $n,t\to\infty$ the estimator $$ \widehat A_t(n)=\frac{\sum_{k=1}^t\mu_k(n)}{\sum_{k=0}^{t-1}\mu_k(n)} $$ for the expectation $A=\mathbf E\mu_1(1)$ is consistent and asymptoticaly unbiased. We obtain limit distributions for $\widehat A_t(n)$ in the subcritical, critical and supercritical cases.
@article{TVP_1975_20_3_a11,
     author = {N. M. Yanev},
     title = {On the statistics of branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {623--633},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/}
}
TY  - JOUR
AU  - N. M. Yanev
TI  - On the statistics of branching processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1975
SP  - 623
EP  - 633
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/
LA  - ru
ID  - TVP_1975_20_3_a11
ER  - 
%0 Journal Article
%A N. M. Yanev
%T On the statistics of branching processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1975
%P 623-633
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/
%G ru
%F TVP_1975_20_3_a11
N. M. Yanev. On the statistics of branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 623-633. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/