On the statistics of branching processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 623-633
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mu_t(n)$, $t=0,1,2,\dots,$ be a Galton–Watson process, starting from $n$ particles. We show that when $n,t\to\infty$ the estimator $$ \widehat A_t(n)=\frac{\sum_{k=1}^t\mu_k(n)}{\sum_{k=0}^{t-1}\mu_k(n)} $$ for the expectation $A=\mathbf E\mu_1(1)$ is consistent and asymptoticaly unbiased. We obtain limit distributions for $\widehat A_t(n)$ in the subcritical, critical and supercritical cases.
@article{TVP_1975_20_3_a11,
author = {N. M. Yanev},
title = {On the statistics of branching processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {623--633},
year = {1975},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/}
}
N. M. Yanev. On the statistics of branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 3, pp. 623-633. http://geodesic.mathdoc.fr/item/TVP_1975_20_3_a11/