Estimation of necessary sample size for testing simple close hypotheses
Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 115-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F_{1_n}$ and $F_{2_n}$ be the $n$-times direct products of distributions $F_1$ and $F_2$ correspondingly. The problem of estimation of necessary sample size for testing hypothesis $F_1$ against $F_2$ is represented as the problem of estimation $\nu=\min\{n\colon\operatorname{var}(F_{1_n},F_{2_n})\ge u=\mathrm{const}\}$. The upper and lower bounds for $\nu$ are given and, supposing $\operatorname{var}(F_{1_n},F_{2_n})\to0$, the asymptotically equivalent estimations for $\nu$ are described in terms of semigroups of limit distributions of $L=\sum\ln[dF_2(X_i)/dF_1(X_i)]$.
@article{TVP_1975_20_1_a8,
author = {\`E. V. Khmaladze},
title = {Estimation of necessary sample size for testing simple close hypotheses},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {115--125},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a8/}
}
È. V. Khmaladze. Estimation of necessary sample size for testing simple close hypotheses. Teoriâ veroâtnostej i ee primeneniâ, Tome 20 (1975) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/TVP_1975_20_1_a8/