The minimal essentially complete class of discrimination rules in the case of unknown higher moments of the distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 832-834

Voir la notice de l'article provenant de la source Math-Net.Ru

A multivariate problem of testing a complex hypothesis against a complex alternative determined both by the known values of mean vectors and covariance matrices is considered. As the loss function the maximal probability of incorrect classification is chosen. It is shown that, unlike the case of commonly used additional assumptions of normality, the minimal essentially complete class of decision rules consists of linear type rules.
@article{TVP_1974_19_4_a12,
     author = {Yu. N. Zhezhel'},
     title = {The minimal essentially complete class of discrimination rules in the case of unknown higher moments of the distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {832--834},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a12/}
}
TY  - JOUR
AU  - Yu. N. Zhezhel'
TI  - The minimal essentially complete class of discrimination rules in the case of unknown higher moments of the distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 832
EP  - 834
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a12/
LA  - ru
ID  - TVP_1974_19_4_a12
ER  - 
%0 Journal Article
%A Yu. N. Zhezhel'
%T The minimal essentially complete class of discrimination rules in the case of unknown higher moments of the distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 832-834
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a12/
%G ru
%F TVP_1974_19_4_a12
Yu. N. Zhezhel'. The minimal essentially complete class of discrimination rules in the case of unknown higher moments of the distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 4, pp. 832-834. http://geodesic.mathdoc.fr/item/TVP_1974_19_4_a12/