On the speed of convergence in a~boundary problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 416-421

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$ be a sequence of independent equally distributed random variables with $\mathbf M\xi_1=0$, $\mathbf D\xi_1=1$, $c_3=\mathbf M|\xi_1|^3$. Suppose that functions $g_i(t)$, $t\ge0$, $i=1,2$, satisfy the conditions \begin{gather*} g_2(t)(t),\quad g_2(0)0(0) \\ |g_i(t+h)-g_i(t)|\quad\text{for all}\quad h>0, \end{gather*} where $K$ is some constant. Put \begin{gather*} W_n(t)=\mathbf P\biggl(g_2\biggl(\frac kn\biggr)\frac1{\sqrt n}\sum_{i=1}^k\xi_i\biggl(\frac kn\biggr),\quad1\le k\le nT\biggr), \\ W(t)=\mathbf P(g_2(t)\xi(t)(t),\quad0), \end{gather*} where $\xi(t)$ is a Brownian motion process, $\xi(0)=0$. The following assertions are proved. Theorem 1. Theore exists an absolute constant $L_1$ such that $$ |W_n(1)-W(1)|\le L_1\frac{(K+1)c_3}{\sqrt n}. $$ Theorem 2. There exists an absolute constant $L_2 \le L_1$ such that $$ |W_n(\infty)-W(\infty)|\le L_2\frac{Kc_3}{\sqrt n}. $$ Theorem 1 is a generalization of the main result of [1] and [2].
@article{TVP_1974_19_2_a17,
     author = {A. I. Sakhanenko},
     title = {On the speed of convergence in a~boundary problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {416--421},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a17/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - On the speed of convergence in a~boundary problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1974
SP  - 416
EP  - 421
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a17/
LA  - ru
ID  - TVP_1974_19_2_a17
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T On the speed of convergence in a~boundary problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1974
%P 416-421
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a17/
%G ru
%F TVP_1974_19_2_a17
A. I. Sakhanenko. On the speed of convergence in a~boundary problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 416-421. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a17/