On the speed of convergence in a~boundary problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 416-421
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$ be a sequence of independent equally distributed random variables with $\mathbf M\xi_1=0$, $\mathbf D\xi_1=1$, $c_3=\mathbf M|\xi_1|^3$. Suppose that functions $g_i(t)$, $t\ge0$, $i=1,2$, satisfy the conditions
\begin{gather*}
g_2(t)(t),\quad g_2(0)0(0)
\\
|g_i(t+h)-g_i(t)|\quad\text{for all}\quad h>0,
\end{gather*}
where $K$ is some constant.
Put
\begin{gather*}
W_n(t)=\mathbf P\biggl(g_2\biggl(\frac kn\biggr)\frac1{\sqrt n}\sum_{i=1}^k\xi_i\biggl(\frac kn\biggr),\quad1\le k\le nT\biggr),
\\
W(t)=\mathbf P(g_2(t)\xi(t)(t),\quad0),
\end{gather*}
where $\xi(t)$ is a Brownian motion process, $\xi(0)=0$.
The following assertions are proved.
Theorem 1. Theore exists an absolute constant $L_1$ such that
$$
|W_n(1)-W(1)|\le L_1\frac{(K+1)c_3}{\sqrt n}.
$$ Theorem 2. There exists an absolute constant $L_2 \le L_1$ such that
$$
|W_n(\infty)-W(\infty)|\le L_2\frac{Kc_3}{\sqrt n}.
$$
Theorem 1 is a generalization of the main result of [1] and [2].
@article{TVP_1974_19_2_a17,
author = {A. I. Sakhanenko},
title = {On the speed of convergence in a~boundary problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {416--421},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a17/}
}
A. I. Sakhanenko. On the speed of convergence in a~boundary problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 416-421. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a17/