On sequential estimation
Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 245-255
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result of this paper is
Theorem 1. {\em Let $X_1,\dots,X_n$ be independent observations with probability density $f(x,\theta)$, $\theta\in\Theta\subset R^1$. Let the following conditions be satisfied:
1) $f(x,\theta)$ is absolutely continuous as a function of $\theta$ in some neighbourhood of $\theta=t$ for all $x$;
2) for each $\theta$, derivative $\partial f(x,\theta)/\partial\theta$ exists in some neighbourhood of $t$ for $\nu$-almost all $x$;
3) the function $I(\theta)$ (see (1.1)) is continuous at $\theta=t$.
Let $(\{T_m^{(n)}\},\tau_n)$ be a sequential estimation procedure and $E_\theta\tau_n=n$. Then, for any $a>0$, inequality (1.3) holds true.}
This theorem shows that for the loss function $|x|^a$ sequential estimation does not give advantage in the asymptotically minimax sense.
@article{TVP_1974_19_2_a1,
author = {I. A. Ibragimov and R. Z. Khas'minskii},
title = {On sequential estimation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {245--255},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a1/}
}
I. A. Ibragimov; R. Z. Khas'minskii. On sequential estimation. Teoriâ veroâtnostej i ee primeneniâ, Tome 19 (1974) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/TVP_1974_19_2_a1/