Formulas for eigen-functions and eigen-measures associated with Markov process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 3-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let ($x_t$, $\zeta$, $\mathscr M_t$, $\mathbf P_x$) be a strong Markov process, $\tau_1$ a Markov time, $a=a_1+ia_2$ a complex number, $\mathbf M_xe^{a_1\tau_1}\infty$. We can consider two operators with the kernel
$$
q_a(x,\Gamma)=\mathbf M_xe^{a_1\tau_1}\chi_\Gamma(x_{\tau_1})
$$
($\chi_\Gamma$ stands for the indicator function of the set $\Gamma$, $\mathbf M_x$ for the expectation corresponding to the probability measure $\mathbf P_x$), one acting upon functions, the other upon measures. Let us call $a$-eigen-functions (measures) eigen-function (measures) of the semi-group generator connected with the Markov process that correspond to the eigen-value $-a$. For certain classes of Markov times, there is a one-to-one correspondence between $a$-eigen-functions (measures) and eigen-functions (measures) of $q_a$ with the eigen-value 1. As for functions, this correspondence is expressed in an obvious way, but for measures the following holds: If $\nu=\nu q_a$, then $\mu$ is an $a$-eigen-measure,
$$ 
\mu(\Gamma)=\int\nu\,(dx)\mathbf M_x\int_0^{\tau_1}e^{at}\chi_\Gamma(x_t)\,dt 
$$
in continuous parameter case; for Markov chains the inner integral is replaced by a sum. 
This relation is a generalization of a formula for invariant measures (i.e. $a=0$) which was introduced in many papers ([2]–[8]).
The class of admissible Markov times includes times when a motion cycle between two disjoint sets ends; for these Markov times, the whole construction is a generalization of an approach to eigen-functions of a differential operator based on Schwartz alternating method. 
The results concerning the correspondence between $a$-eigen functions (measures) and eigen-functions (measures) of $q_a$ can be applied to investigate the asymptotical behaviour of eigen-values and eigen-functions of a differential operator with small parameter (cf. [13]).
			
            
            
            
          
        
      @article{TVP_1973_18_1_a0,
     author = {A. D. Wentzell},
     title = {Formulas for eigen-functions and eigen-measures associated with {Markov} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--28},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a0/}
}
                      
                      
                    A. D. Wentzell. Formulas for eigen-functions and eigen-measures associated with Markov process. Teoriâ veroâtnostej i ee primeneniâ, Tome 18 (1973) no. 1, pp. 3-28. http://geodesic.mathdoc.fr/item/TVP_1973_18_1_a0/
