The Behavior of a Jump for Processes with Independent Increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 143-147
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi(t), t \geq 0$ be a process with independent increments, $\xi(0)=0$, $\tau_y=\inf\{t:\xi(t)\ge y\}$, $\Gamma_y=\xi(\tau_y)-y$.
We prove that:
1) $\mathbf{P}\{\Gamma_y>0\}=0$ for all $y>0$ if and only if
$$
\ln\mathbf{M}e^{i\lambda\xi(t)}=t\biggl\{ia\lambda-\frac{\sigma^2\lambda^2}{2}+\int_{-\infty}^0 \biggl(e^{i\lambda x}-1-\frac{i\lambda x}{1+x^2}\biggr)ds(x)\biggr\};
$$ 2) $\mathbf{P}\{\Gamma_y>0\}>0,\ y>0,\ y\ne kh,\ k=1,2,\dots,h>0$, and $\mathbf{P}\{\Gamma_{kh}>0\}=0$, $k=1,2,\dots$ if and only if
$$
\ln\mathbf{M}e^{i\lambda\xi(t)}=t\biggl\{p_1(e^{i\lambda h-1})+\sum_{k=-\infty}^{-1}p_k(e^{i\lambda kh}-1)\biggr\},
$$
$$
p_k\ge 0,\quad k=1,-1,-2,\dots,\quad \sum_{k=-\infty}^{-1}p_k\infty,\quad p_1>0;
$$ 3) in all other cases $\mathbf{P}\{\Gamma_y>0\}>0$ for all $y>0$.
@article{TVP_1972_17_1_a10,
author = {B. A. Rogozin},
title = {The {Behavior} of a {Jump} for {Processes} with {Independent} {Increments}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {143--147},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a10/}
}
B. A. Rogozin. The Behavior of a Jump for Processes with Independent Increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 17 (1972) no. 1, pp. 143-147. http://geodesic.mathdoc.fr/item/TVP_1972_17_1_a10/