The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 504-513
Voir la notice de l'article provenant de la source Math-Net.Ru
A general combinatorial model is studied in terms of which, for example, the problem of disposal of $m$ different objects into $n$ identical cells or the problem of partitions of a set consisting of $m$ elements into disjoint subsets could be discribed.
It is proved, in particular, that, under some conditions laid on a subsequence $A$ of positive integers, the number of subsets with the powers in $A$ of a divided at random set consisting of $m$ elements is asymptotically normal as $m\to\infty$.
@article{TVP_1971_16_3_a7,
author = {V. N. Sa\v{c}kov},
title = {The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {504--513},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a7/}
}
TY - JOUR AU - V. N. Sačkov TI - The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 504 EP - 513 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a7/ LA - ru ID - TVP_1971_16_3_a7 ER -
V. N. Sačkov. The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 504-513. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a7/