The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 504-513

Voir la notice de l'article provenant de la source Math-Net.Ru

A general combinatorial model is studied in terms of which, for example, the problem of disposal of $m$ different objects into $n$ identical cells or the problem of partitions of a set consisting of $m$ elements into disjoint subsets could be discribed. It is proved, in particular, that, under some conditions laid on a subsequence $A$ of positive integers, the number of subsets with the powers in $A$ of a divided at random set consisting of $m$ elements is asymptotically normal as $m\to\infty$.
@article{TVP_1971_16_3_a7,
     author = {V. N. Sa\v{c}kov},
     title = {The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {504--513},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a7/}
}
TY  - JOUR
AU  - V. N. Sačkov
TI  - The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 504
EP  - 513
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a7/
LA  - ru
ID  - TVP_1971_16_3_a7
ER  - 
%0 Journal Article
%A V. N. Sačkov
%T The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 504-513
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a7/
%G ru
%F TVP_1971_16_3_a7
V. N. Sačkov. The distribution of the number of different elements of a~symmetric basis in a~random $mA$-sample. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 504-513. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a7/