On an inequality in the theory of stochastic integrals
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 446-457
Voir la notice de l'article provenant de la source Math-Net.Ru
Let
$$
x_t=\int_0^t\sigma_s\,d\xi_s+\int_0^tb_s\,ds
$$
be an $n$-dimensional stochastic integral, $U$ be a bounded domain in the $n$-dimensional Euclidean space, $x'\in U$, $\tau$ be the first exit time of $x'+x_t$ out of $U$. Let $|b_t|\le M\cdot\sqrt[n]{\det\sigma_t^2}$ for all $t$, $\omega$.
In the paper, a constant $N$ is proved to exist that depends only on $n$ and the diameter of $U$ such that, for all Borel functions $f$
$$
\mathbf M\int_0^\tau|f(x'+x_t)|\sqrt[n]{\det\sigma_t^2}\,dt\le N\|f\|_{L_n,U}.
$$ The proof is based on the theory of convex polyhedrons.
@article{TVP_1971_16_3_a2,
author = {N. V. Krylov},
title = {On an inequality in the theory of stochastic integrals},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {446--457},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a2/}
}
N. V. Krylov. On an inequality in the theory of stochastic integrals. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 446-457. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a2/