On an inequality in the theory of stochastic integrals
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 446-457

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $$ x_t=\int_0^t\sigma_s\,d\xi_s+\int_0^tb_s\,ds $$ be an $n$-dimensional stochastic integral, $U$ be a bounded domain in the $n$-dimensional Euclidean space, $x'\in U$, $\tau$ be the first exit time of $x'+x_t$ out of $U$. Let $|b_t|\le M\cdot\sqrt[n]{\det\sigma_t^2}$ for all $t$$\omega$. In the paper, a constant $N$ is proved to exist that depends only on $n$ and the diameter of $U$ such that, for all Borel functions $f$ $$ \mathbf M\int_0^\tau|f(x'+x_t)|\sqrt[n]{\det\sigma_t^2}\,dt\le N\|f\|_{L_n,U}. $$ The proof is based on the theory of convex polyhedrons.
@article{TVP_1971_16_3_a2,
     author = {N. V. Krylov},
     title = {On an inequality in the theory of stochastic integrals},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {446--457},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a2/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On an inequality in the theory of stochastic integrals
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 446
EP  - 457
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a2/
LA  - ru
ID  - TVP_1971_16_3_a2
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On an inequality in the theory of stochastic integrals
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 446-457
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a2/
%G ru
%F TVP_1971_16_3_a2
N. V. Krylov. On an inequality in the theory of stochastic integrals. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 3, pp. 446-457. http://geodesic.mathdoc.fr/item/TVP_1971_16_3_a2/