On a~minimax analogue of the weak law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 360-366

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $U$ and $V$ be two finite sets and, for any $u_1,u_2,\dots\in U$, $v_1,v_2,\dots\in V$, $x_t^{u_t,v_t}$ be independent non-negative random variables with distribution functions $F_{u_t,v_t}(x)$, $t=1,2,\dots$ respectively. At each time $t=1,\dots,n$ the first player chooses a probability distribution of $u_t$ depending on the observed data $x_1^{u_1,v_1},\dots,x_{t-1}^{u_{t-1},v_{t-1}}$. The second player makes his “move”: chooses a distribution for $v_t$ in the same way. Put $$ w_n(x)=\sup\inf\mathbf P\{x_1^{u_1,v_1}+\dots+x_n^{u_n,v_n}\le nx\} $$ where supremum is taken over all the strategies of the first player and infimum over all the strategies of the second player. The main result of the paper (Theorem 1) is: For any $\varepsilon>0$, $w_n(a+\varepsilon)\to1$, $w_n(a-\varepsilon)\to0$ where $a=\operatornamewithlimits{val}_{u,v}\mathbf Mx^{u,v}$.
@article{TVP_1971_16_2_a14,
     author = {B. G. Pittel'},
     title = {On a~minimax analogue of the weak law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {360--366},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a14/}
}
TY  - JOUR
AU  - B. G. Pittel'
TI  - On a~minimax analogue of the weak law of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 360
EP  - 366
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a14/
LA  - ru
ID  - TVP_1971_16_2_a14
ER  - 
%0 Journal Article
%A B. G. Pittel'
%T On a~minimax analogue of the weak law of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 360-366
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a14/
%G ru
%F TVP_1971_16_2_a14
B. G. Pittel'. On a~minimax analogue of the weak law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 360-366. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a14/