Minimax weights in a~trend detection problem for a~stochastic process
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 339-345
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F_n(M)$ be the class of real functions of the form $f(t)=a_0+a_1t+\dots+ a_nt^n+\mathrm g(t)t^{n+1}$ where $\sup\limits_t|\mathrm g(t)|\le M$, $-\infty$.
The problem considered is to estimate the regression coefficient $a_0=f(0)$ from the data $\xi(t)=f(t)+\eta(t)$, $\eta(t)$ being a white noise process ($\mathbf M\eta(t)=0$, $\mathbf M\eta(s)\eta(t)=d^2\delta(t-s)$). For the class of linear estimators $\widehat f(0)=\int_{-\infty}^\infty l(t)\xi(t)\,dt$, a weight $l^*(t)$ is called minimax if
$$
\sup_{f\in F_n(M)}\Delta(l^*,f)=\inf_l\sup_{f\in F_n(M)}\Delta(l,f)
$$
where $\Delta(l,f)=\mathbf M[f(0)-\widehat f(0)]^2$.
Theorem 1 gives necessary and sufficient conditions for a weight to be minimax. For $n=0$ and $n=1$ minimax weights are obtained in Theorem 2.
@article{TVP_1971_16_2_a10,
author = {I. L. Legostaeva and A. N. \v{S}iryaev},
title = {Minimax weights in a~trend detection problem for a~stochastic process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {339--345},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a10/}
}
TY - JOUR AU - I. L. Legostaeva AU - A. N. Širyaev TI - Minimax weights in a~trend detection problem for a~stochastic process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1971 SP - 339 EP - 345 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a10/ LA - ru ID - TVP_1971_16_2_a10 ER -
I. L. Legostaeva; A. N. Širyaev. Minimax weights in a~trend detection problem for a~stochastic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 339-345. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a10/