Minimax weights in a~trend detection problem for a~stochastic process
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 339-345

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F_n(M)$ be the class of real functions of the form $f(t)=a_0+a_1t+\dots+ a_nt^n+\mathrm g(t)t^{n+1}$ where $\sup\limits_t|\mathrm g(t)|\le M$, $-\infty$. The problem considered is to estimate the regression coefficient $a_0=f(0)$ from the data $\xi(t)=f(t)+\eta(t)$, $\eta(t)$ being a white noise process ($\mathbf M\eta(t)=0$, $\mathbf M\eta(s)\eta(t)=d^2\delta(t-s)$). For the class of linear estimators $\widehat f(0)=\int_{-\infty}^\infty l(t)\xi(t)\,dt$, a weight $l^*(t)$ is called minimax if $$ \sup_{f\in F_n(M)}\Delta(l^*,f)=\inf_l\sup_{f\in F_n(M)}\Delta(l,f) $$ where $\Delta(l,f)=\mathbf M[f(0)-\widehat f(0)]^2$. Theorem 1 gives necessary and sufficient conditions for a weight to be minimax. For $n=0$ and $n=1$ minimax weights are obtained in Theorem 2.
@article{TVP_1971_16_2_a10,
     author = {I. L. Legostaeva and A. N. \v{S}iryaev},
     title = {Minimax weights in a~trend detection problem for a~stochastic process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {339--345},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a10/}
}
TY  - JOUR
AU  - I. L. Legostaeva
AU  - A. N. Širyaev
TI  - Minimax weights in a~trend detection problem for a~stochastic process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1971
SP  - 339
EP  - 345
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a10/
LA  - ru
ID  - TVP_1971_16_2_a10
ER  - 
%0 Journal Article
%A I. L. Legostaeva
%A A. N. Širyaev
%T Minimax weights in a~trend detection problem for a~stochastic process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1971
%P 339-345
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a10/
%G ru
%F TVP_1971_16_2_a10
I. L. Legostaeva; A. N. Širyaev. Minimax weights in a~trend detection problem for a~stochastic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 2, pp. 339-345. http://geodesic.mathdoc.fr/item/TVP_1971_16_2_a10/