An estimate of the convergence rate for the absorption probability
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 140-148
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi_1$, $\xi_2$, …be a sequence of mutually independent equally distributed random variables. Let $\mathbf M\xi_1=m$, $\mathbf M\xi_1^2=2\lambda^2$, $\mathbf M|\xi_1|^3=c_3$. Define $n_x$ as the least integer $n$ for which $\zeta_n+x\notin(a,b)$ where $\zeta_n=\sum_{i=0}^n\xi_i$ and $(a,b)$ is a finite interval of the real line. Put
$$
P(x)=P\{\zeta_{n_x}+x\ge b\},\quad x\in(a,b). 
$$
The following assertion is proved: there exists an absolute constant $L$ such that
$$
\sup_{a}|P(x)-u(x)|\frac{Lc_3}{(b-a)\lambda^2}\biggl(1+\frac{|m|}{\lambda^2}(b-a)\biggr)
$$
where $u(x)$ is the solution of the equation
$$
u''+\frac m{\lambda^2}u'=0
$$
satisfying the boundary conditions $u(a)=0$, $u(b)=1$.
			
            
            
            
          
        
      @article{TVP_1971_16_1_a11,
     author = {S. V. Nagaev},
     title = {An estimate of the convergence rate for the absorption probability},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {140--148},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a11/}
}
                      
                      
                    S. V. Nagaev. An estimate of the convergence rate for the absorption probability. Teoriâ veroâtnostej i ee primeneniâ, Tome 16 (1971) no. 1, pp. 140-148. http://geodesic.mathdoc.fr/item/TVP_1971_16_1_a11/
