Phase transitions in random graphs
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 200-215
Voir la notice de l'article provenant de la source Math-Net.Ru
To each subgraph $G$ of a complete graph of $m$ vertices statistical weight $w(G)=x^kh^n$ is assigned, where $k=k(G)$ is the number of components and $n=n(G)$ is the number of edges of graph $G$; $x$ and $h>0$. A random graph $\mathscr G_m(x\mid h)$ is defined by the condition that $\mathbf P(\mathscr G_m(x\mid h)=G)=Z_m^{-1}(x\mid h)w(G)$, where $Z_m(x\mid h)$ is a necessary normalizing coefficient. It is proved that there exists a limit
$$
\lim_{m\to\infty}\frac1m\ln Z_m(x\mid y/m)=\chi(x,y).
$$
Limit values of density
$$
\rho(x,y)=\lim_{m\to\infty}\frac1m\mathbf En(\mathscr G_m(x\mid y/m))
$$
and disconnectedness
$$
\varkappa(x,y)=\lim_{m\to\infty}\frac1m\mathbf Ek(\mathscr G_m(x\mid y/m))
$$
of random graph $\mathscr G_m(x\mid y/m)$ are expressed in terms of partial derivatives of $\chi(x,y)$.
An investigation of functions $\rho(x,y)$ and $\varkappa(x,y)$ discovers a surprising analogy of the behaviour of these functions to the behaviour of isotherms of physical systems considered in statistical physics. Connections between some properties of functions $\rho(x,y)$ and $\varkappa(x,y)$ and the structure of random graph $\mathscr G_m(x\mid y/m)$ are under investigation.
@article{TVP_1970_15_2_a2,
author = {V. E. Stepanov},
title = {Phase transitions in random graphs},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {200--215},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a2/}
}
V. E. Stepanov. Phase transitions in random graphs. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 200-215. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a2/