On the speed of convergence in a~boundary problem.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 179-199
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$ be a sequence of independent equally distributed random variables with variance 1.
Put $a=\mathbf M\xi_1$, $c_3=\mathbf M|\xi_1-a|^3$.
Let the functions $g_i(t)$, $t\ge0$, $i=1,2$, satisfy the conditions
\begin{gather*}
g_2(t)(t),\quad g_2(0)0(0),
\\
|g_i(t+h)-g_i(t)|,\quad h>0,
\end{gather*}
where $K$ is some constant.
Put
$$
S_{nk}=\frac1{\sqrt n}\sum_{i=1}^k(\xi_i-a).
$$
Let
\begin{gather*}
W_n=\mathbf P\{g_2(k/n){nk}(k/n),\quad k=\overline{1,n}\};
\\
W=\mathbf P\{g_2(t)\xi(t)-\xi(0)(t),\quad0\le t\le1\},
\end{gather*}
where $\xi(t)$ is a process of Brownian motion.
The following assertion is proved.
Theorem.{\em There exists an absolute constant $L$ such that
$$
|W_h-W|\frac{c_3^2(K+1)}{\sqrt n}.
$$
}
@article{TVP_1970_15_2_a1,
author = {S. V. Nagaev},
title = {On the speed of convergence in a~boundary {problem.~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {179--199},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a1/}
}
S. V. Nagaev. On the speed of convergence in a~boundary problem.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 179-199. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a1/