On the speed of convergence in a~boundary problem.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 179-199

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$ be a sequence of independent equally distributed random variables with variance 1. Put $a=\mathbf M\xi_1$, $c_3=\mathbf M|\xi_1-a|^3$. Let the functions $g_i(t)$, $t\ge0$, $i=1,2$, satisfy the conditions \begin{gather*} g_2(t)(t),\quad g_2(0)0(0), \\ |g_i(t+h)-g_i(t)|,\quad h>0, \end{gather*} where $K$ is some constant. Put $$ S_{nk}=\frac1{\sqrt n}\sum_{i=1}^k(\xi_i-a). $$ Let \begin{gather*} W_n=\mathbf P\{g_2(k/n){nk}(k/n),\quad k=\overline{1,n}\}; \\ W=\mathbf P\{g_2(t)\xi(t)-\xi(0)(t),\quad0\le t\le1\}, \end{gather*} where $\xi(t)$ is a process of Brownian motion. The following assertion is proved. Theorem.{\em There exists an absolute constant $L$ such that $$ |W_h-W|\frac{c_3^2(K+1)}{\sqrt n}. $$ }
@article{TVP_1970_15_2_a1,
     author = {S. V. Nagaev},
     title = {On the speed of convergence in a~boundary {problem.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {179--199},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a1/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - On the speed of convergence in a~boundary problem.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 179
EP  - 199
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a1/
LA  - ru
ID  - TVP_1970_15_2_a1
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T On the speed of convergence in a~boundary problem.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 179-199
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a1/
%G ru
%F TVP_1970_15_2_a1
S. V. Nagaev. On the speed of convergence in a~boundary problem.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 179-199. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a1/