An improvement of a~convergence rate estimate
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 667-678
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi_1,\xi_2,\dots$ be independent random variables equally distributed with a continuous distribution function$F(x)$. Put
$$
W_n^2=n\int_{-\infty}^\infty[F_n(x)-F(x)]^2\,dF(x),
$$
where
$$
F_n(x)=\frac1n\sum_{j=1}^n\delta(x-\xi_j),\quad\delta(x)=
\begin{cases}
1,>0,
\\
0,\le0.
\end{cases}
$$
Denote by $S(x)$ the distribution function with the characteristic function
$$
s(t)=\prod_{j=1}^\infty(1-2it(\pi j)^{-2})^{-1/2}.
$$
In [3], it has been shown that
$$
\Delta_n=\sup_{x\in R^1}|\mathbf P(W_n^2)-S(x)|\underset{n\to\infty}\longrightarrow0
$$
not slowlier than $n^{-1/10}$. In the present paper, we obtain a stronger result: for any $\varepsilon>0$ there exists a $c(\varepsilon)$ such that
$$
\Delta_n\le c(\varepsilon)n^{-1/6+\varepsilon},\quad n=1,2,\dots.
$$
            
            
            
          
        
      @article{TVP_1969_14_4_a5,
     author = {V. V. Sazonov},
     title = {An improvement of a~convergence rate estimate},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {667--678},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/}
}
                      
                      
                    V. V. Sazonov. An improvement of a~convergence rate estimate. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 667-678. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/
