An improvement of a~convergence rate estimate
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 667-678

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$ be independent random variables equally distributed with a continuous distribution function$F(x)$. Put $$ W_n^2=n\int_{-\infty}^\infty[F_n(x)-F(x)]^2\,dF(x), $$ where $$ F_n(x)=\frac1n\sum_{j=1}^n\delta(x-\xi_j),\quad\delta(x)= \begin{cases} 1,>0, \\ 0,\le0. \end{cases} $$ Denote by $S(x)$ the distribution function with the characteristic function $$ s(t)=\prod_{j=1}^\infty(1-2it(\pi j)^{-2})^{-1/2}. $$ In [3], it has been shown that $$ \Delta_n=\sup_{x\in R^1}|\mathbf P(W_n^2)-S(x)|\underset{n\to\infty}\longrightarrow0 $$ not slowlier than $n^{-1/10}$. In the present paper, we obtain a stronger result: for any $\varepsilon>0$ there exists a $c(\varepsilon)$ such that $$ \Delta_n\le c(\varepsilon)n^{-1/6+\varepsilon},\quad n=1,2,\dots. $$
@article{TVP_1969_14_4_a5,
     author = {V. V. Sazonov},
     title = {An improvement of a~convergence rate estimate},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {667--678},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/}
}
TY  - JOUR
AU  - V. V. Sazonov
TI  - An improvement of a~convergence rate estimate
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 667
EP  - 678
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/
LA  - ru
ID  - TVP_1969_14_4_a5
ER  - 
%0 Journal Article
%A V. V. Sazonov
%T An improvement of a~convergence rate estimate
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 667-678
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/
%G ru
%F TVP_1969_14_4_a5
V. V. Sazonov. An improvement of a~convergence rate estimate. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 667-678. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/