An improvement of a convergence rate estimate
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 667-678
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$ be independent random variables equally distributed with a continuous distribution function$F(x)$. Put $$ W_n^2=n\int_{-\infty}^\infty[F_n(x)-F(x)]^2\,dF(x), $$ where $$ F_n(x)=\frac1n\sum_{j=1}^n\delta(x-\xi_j),\quad\delta(x)= \begin{cases} 1,&x>0, \\ 0,&x\le0. \end{cases} $$ Denote by $S(x)$ the distribution function with the characteristic function $$ s(t)=\prod_{j=1}^\infty(1-2it(\pi j)^{-2})^{-1/2}. $$ In [3], it has been shown that $$ \Delta_n=\sup_{x\in R^1}|\mathbf P(W_n^2<x)-S(x)|\underset{n\to\infty}\longrightarrow0 $$ not slowlier than $n^{-1/10}$. In the present paper, we obtain a stronger result: for any $\varepsilon>0$ there exists a $c(\varepsilon)$ such that $$ \Delta_n\le c(\varepsilon)n^{-1/6+\varepsilon},\quad n=1,2,\dots. $$
@article{TVP_1969_14_4_a5,
author = {V. V. Sazonov},
title = {An improvement of a~convergence rate estimate},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {667--678},
year = {1969},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/}
}
V. V. Sazonov. An improvement of a convergence rate estimate. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 667-678. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a5/