Some theorems of the strong-law-of-large-numbers type
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 319-326
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be the $SL(m)$, $U$ the $S\mathscr O(m)$, $\Gamma$ the diagonal subgroup of $U$ and $X=U/\Gamma$. Consider a sequence $g_1,\dots,g_n,\dots$ of independent identically distributed random elements of $G$. Let
$$
g(n)=g_1g_2\dots g_n=x(n)d(n)u(n),
$$
where $x(n)\in X$, $u(n)\in U$ and $d(n)=\operatorname{diag}(e^{t_1(n)},\dots,e^{t_m(n)})$, $t_1(n)\dots$. Under some condition on the distribution of $g_i$ the following theorems are proved:
1) there exist real numbers $a_1$ such that, with probability 1,
$$
\frac1nt_k(n)\to a_k,\quad k=1,\dots,m;
$$ 2) with probability 1, $x(n)\to x(\infty)$, where $x(\infty)$ is a random element of $X$.
			
            
            
            
          
        
      @article{TVP_1969_14_2_a12,
     author = {V. N. Tutubalin},
     title = {Some theorems of the strong-law-of-large-numbers type},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {319--326},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a12/}
}
                      
                      
                    V. N. Tutubalin. Some theorems of the strong-law-of-large-numbers type. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 319-326. http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a12/
