Some theorems of the strong-law-of-large-numbers type
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 319-326

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be the $SL(m)$, $U$ the $S\mathscr O(m)$, $\Gamma$ the diagonal subgroup of $U$ and $X=U/\Gamma$. Consider a sequence $g_1,\dots,g_n,\dots$ of independent identically distributed random elements of $G$. Let $$ g(n)=g_1g_2\dots g_n=x(n)d(n)u(n), $$ where $x(n)\in X$, $u(n)\in U$ and $d(n)=\operatorname{diag}(e^{t_1(n)},\dots,e^{t_m(n)})$, $t_1(n)\dots$. Under some condition on the distribution of $g_i$ the following theorems are proved: 1) there exist real numbers $a_1$ such that, with probability 1, $$ \frac1nt_k(n)\to a_k,\quad k=1,\dots,m; $$ 2) with probability 1, $x(n)\to x(\infty)$, where $x(\infty)$ is a random element of $X$.
@article{TVP_1969_14_2_a12,
     author = {V. N. Tutubalin},
     title = {Some theorems of the strong-law-of-large-numbers type},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {319--326},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a12/}
}
TY  - JOUR
AU  - V. N. Tutubalin
TI  - Some theorems of the strong-law-of-large-numbers type
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 319
EP  - 326
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a12/
LA  - ru
ID  - TVP_1969_14_2_a12
ER  - 
%0 Journal Article
%A V. N. Tutubalin
%T Some theorems of the strong-law-of-large-numbers type
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 319-326
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a12/
%G ru
%F TVP_1969_14_2_a12
V. N. Tutubalin. Some theorems of the strong-law-of-large-numbers type. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 319-326. http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a12/