Limit theorems in a~model of the arrangement of paticles of two types
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 542-548
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Particles of two types are thrown independently into $N$ cells. A particle of the kth type gets into the ith cell with a probability $a_i^k$, $k=1,2$, $i=1,\dots,N$. Denote by $\mu_0^{(k)}(n_k)$ the number of cells which contain no particles of type $k$ ($k=1,2$) and by $\mu_0^3(n_1+n_2)$ the number of cells which contain no particles at all. In this paper some limit theorems for $\mu_0^{(1)}(n_1)$, $\mu_0^{(2)}(n_2)$ and $\mu_0^{(3)}(n_1+n_2)$ are proved.
			
            
            
            
          
        
      @article{TVP_1968_13_3_a18,
     author = {T. Yu. Popova},
     title = {Limit theorems in a~model of the arrangement of paticles of two types},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {542--548},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a18/}
}
                      
                      
                    T. Yu. Popova. Limit theorems in a~model of the arrangement of paticles of two types. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 542-548. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a18/
