Limit theorems in a model of the arrangement of paticles of two types
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 542-548
Cet article a éte moissonné depuis la source Math-Net.Ru
Particles of two types are thrown independently into $N$ cells. A particle of the kth type gets into the ith cell with a probability $a_i^k$, $k=1,2$, $i=1,\dots,N$. Denote by $\mu_0^{(k)}(n_k)$ the number of cells which contain no particles of type $k$ ($k=1,2$) and by $\mu_0^3(n_1+n_2)$ the number of cells which contain no particles at all. In this paper some limit theorems for $\mu_0^{(1)}(n_1)$, $\mu_0^{(2)}(n_2)$ and $\mu_0^{(3)}(n_1+n_2)$ are proved.
@article{TVP_1968_13_3_a18,
author = {T. Yu. Popova},
title = {Limit theorems in a~model of the arrangement of paticles of two types},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {542--548},
year = {1968},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a18/}
}
T. Yu. Popova. Limit theorems in a model of the arrangement of paticles of two types. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 542-548. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a18/