On the local behavior of processes with independent increments
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 507-512
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi(t)$, $t\ge0$, $\xi(0)=0$, be a homogeneous process with independent increments. In [2] it was shown that $\lim\limits_{t\to0}(\xi(t)/t)$ exists and is finite if sample functions of $\xi(t)$ have a bounded variation. We prove that, in the opposite case,
$$
\varlimsup_{t\to0}\frac{\xi(t)}t=\infty.
$$
            
            
            
          
        
      @article{TVP_1968_13_3_a11,
     author = {B. A. Rogozin},
     title = {On the local behavior of processes with independent increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {507--512},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a11/}
}
                      
                      
                    B. A. Rogozin. On the local behavior of processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 507-512. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a11/
