On the local behavior of processes with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 507-512

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t)$, $t\ge0$, $\xi(0)=0$, be a homogeneous process with independent increments. In [2] it was shown that $\lim\limits_{t\to0}(\xi(t)/t)$ exists and is finite if sample functions of $\xi(t)$ have a bounded variation. We prove that, in the opposite case, $$ \varlimsup_{t\to0}\frac{\xi(t)}t=\infty. $$
@article{TVP_1968_13_3_a11,
     author = {B. A. Rogozin},
     title = {On the local behavior of processes with independent increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {507--512},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a11/}
}
TY  - JOUR
AU  - B. A. Rogozin
TI  - On the local behavior of processes with independent increments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 507
EP  - 512
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a11/
LA  - ru
ID  - TVP_1968_13_3_a11
ER  - 
%0 Journal Article
%A B. A. Rogozin
%T On the local behavior of processes with independent increments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 507-512
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a11/
%G ru
%F TVP_1968_13_3_a11
B. A. Rogozin. On the local behavior of processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 507-512. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a11/